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Chapitre 1

Introduction générale

Cette these est consacrée a ’étude mathématique du comportement microscopique de cer-
tains systemes de particules en interaction provenant de la physique statistique et de la théorie
des matrices aléatoires.

On considere des systémes a 1’équilibre de N particules classiques dans l’espace euclidien
R?, qui interagissent par paires via un potentiel d’interaction g singulier et & longue portée. On
utilisera souvent 'image suivante : les particules sont des charges ponctuelles et g un potentiel
d’interaction “électrostatique”. Ces particules sont piégées par un potentiel NV (par exemple
un champ électrique externe d’intensité proportionnelle & N) qui évite qu’elles ne se repoussent
mutuellement & I'infini. On s’intéresse au comportement aléatoire de ces systéemes au sens de la
physique statistique, en tant que modeles présentant un intérét physique intrinseque mais aussi
parce que pour certains choix de g, V' et de la température, la loi des particules coincide avec
la loi des valeurs propres de modéles de matrices aléatoires Hermitiennes (en dimension 1) et
non-Hermitiennes (en dimension 2).

Si le comportement global des particules (& ’échelle macroscopique O(1)) est bien compris,
le comportement local (& I’échelle microscopique O(N /%)) est encore peu étudié en dehors d’un
cas particulier (le gaz & interactions logarithmiques en dimension 1). La définition d’une “énergie
renormalisée” par Sandier-Serfaty dans [SS12] (étendue ensuite dans [SS15b,SS15a,RS15,PS15])
permet de ré-écrire I'énergie d’interaction du systéme en termes d’une quantité (la norme du
champ électrique associé, calculée de maniere renormalisée pour compenser la divergence du
champ pres des charges ponctuelles) qui dépend naturellement de la configuration de points &
I’échelle microscopique. Suivant les principes de la physique statistique, on peut alors chercher
a discriminer entre les configurations rares, de grande énergie, et les configurations typiques, de
basse énergie, tout en prenant en compte 1’élément de volume dans ’espace des phases. On fait
alors apparaitre une fonctionnelle d’énergie libre F3 qui gouverne le comportement des particules
a 1’échelle microscopique. Plus précisément on montre que la loi du champ empirique (c’est-a-dire
de la configuration de points observée lorsque on zoome d’'un facteur N'/¢ autour d’un point
choisi aléatoirement dans une petite zone) obéit a un Principe de Grandes Déviations (PGD)
avec pour fonction de taux Fg.

Pour cela, on combine des idées probabilistes appartenant a la théorie des grandes déviations
avec des techniques qui relevent du calcul des variations. Un avantage est que les méthodes utili-
sées fonctionnent indifféremment pour les log-gases en dimension 1 et 2 (qui correspondent, dans
certains cas, & des modeles de matrices aléatoires) et pour des interactions plus générales comme
le cas, particulierement pertinent d’un point de vue physique, de 'interaction Coulombienne en
dimension 3. Cette approche fournit également une interprétation physique de certains résultats
connus en théorie des matrices aléatoires, tout en permettant parfois d’affaiblir les hypotheses
de régularité sur le potentiel V.
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Apres avoir décrit les motivations et le contexte physico-mathématique de notre travail, on
présente les principales méthodes mises en ceuvre et les résultats obtenus au cours de cette these.
En dernier lieu, on mentionnera quelques perspectives de recherches en relation avec les objets
étudiés.

1.1 Contexte et motivations

1.1.1 Physique statistique
a. Contexte physique

Soit d > 1. On considére un systéme de N particules dans R? interagissant par paires via un
potentiel g et soumises a un champ extérieur NV. L’ensemble des états possibles du systéme,
Uespace des phases est donc (R%)N. A chaque état Xy = (z1,...,zy5) € (RY)Y on peut associer
une énergie Hy(Xy) donnée par

N
Hy(Xn) = Y gl —x)+ > NV(z).

1<i#j<N i=1
Le premier terme du membre de droite correspond a ’énergie d’interaction des particules entre
elles (la somme de I'énergie potentielle d’interaction entre x; et x; pour ¢ # j) et le second terme

correspond a l’effet du potentiel confinant NV sur chacune des particules.

A la température T, si 'on note § = %, les lois de la physique statistique stipulent que le
comportement du systéme est caractérisé par une mesure de probabilité sur ’espace des phases,
qui donne un poids proportionnel au facteur de Boltzmann exp (—BHN()? N)) a chaque état

X ~. On introduit donc la mesure de Gibbs canonique a N points et a température inverse 3 :

N
exp [ B (Y gz — ;) + Y NV(x) | | dXn, (1.1.1)
B oy i=1

dPy (X n) = 7

ot dXy := dz;...dxy est la mesure de Lebesgue sur (R!)N. La constante Zy, 3 dans (1.1.1)
sert a normaliser Py g, elle vaut donc

N
ZNﬁ = / exp —B Zg(azz — l’j) + ZNV(CIZZ) dXN, (1.1.2)
RHN i] i=1

et est nommée “fonction de partition” dans le langage de la physique statistique. Pour que (1.1.1))
fasse sens, il faut en particulier que U'intégrale de (1.1.2)) converge.

b. Questions typiques

Soit On une quantité observable, c¢’est-a-dire une fonction mesurable de 1’état Xy du Sys-
teme. Par abus de terminologie, on parlera encore de 1'observable Oy pour désigner la variable
aléatoire ON(X ~), lorsque X ~ est distribuée selon la mesure de Gibbs Py 5. Citons quelques
exemples :

— La mesure empirique des particules Xn % Zﬁ\;l Oz, -

— La plus petite distance entre deux particules Xy — ming; [x; — x|

— Le plus grand module des particules Xy — max? | |z;].

— Le nombre de particules se trouvant dans un certain domaine €.
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Plusieurs questions naturelles peuvent étre posées :

Comportement typique. Y a-t-il une (ou plusieurs) limite(s), en un sens a préciser, a

I’observable quand N — oo ? Cette limite est-elle déterministe ou bien aléatoire ? Peut-
on la décrire comme la solution d’un probléme variationnel ? A quelle vitesse y a-t-il
convergence 7

Universalité. Comment la limite dépend-elle de V' (et de g), c’est-a-dire de la nature exacte

du systéme physique ?

Role de la température. Comment la limite dépend-elle de 57 Y a-t-il des transitions de

phases? Que peut-on dire des cas particuliers 5 — 0et 8 — c0?

C’est a ce type de questions que l'on va s’intéresser par la suite. Le choix de ’observable Oy
peut se révéler délicat : on veut que On(Xy) encode assez d’informations sur le systéme pour
étre “intéressante”, mais plus une observable est précise, plus il peut étre difficile de caractériser
sa limite.

c. Modéles étudiés

Les interactions entre particules étudiées dans cette these présentent deux particularités
techniques :

1.

2.

Le potentiel est singulier en 0, et le systéme est défini dans tout R (et pas seulement sur
un réseau).

Les interactions sont a longue portée (en anglais long-range) : elles tendent vers 0 quand
|x — y| — 0o comme |z — y|~* avec s < d, voire pas du tout. En particulier, 'effet d’une
particule placée en y = 0 est a priori ressenti dans tout I’espace, puisque x +— g(z) n’est
pas intégrable sur RY.

On distinguera, dans notre étude, trois types d’interactions.

Le

Le

gas logarithmique uni-dimensionnel.

[d=1, gz —y) = —log |z — o]

Ce modele est appelé un one-dimensional log-gas ou [-ensemble, et il a été largement
étudié en raison de ses liens avec la théorie des matrices aléatoires, que 'on développera
en Section La pertinence physique de ce modele n’est pas primordiale, mais il peut
étre vu comme un “modele jouet” de physique statistique, voir par exemple [For10] pour
un présentation exhaustive du log-gas et de son lien avec les matrices aléatoires. Il est
aussi relié a des questions de physique concernant le Calogero-Sutherland model, pour
lequel la fonction d’onde de I’état fondamental coincide avec la loi d’un log-gas avec
potentiel Gaussien (voir [For98]).

gaz de Coulomb bi-dimensionnel.

(d=2, gz —y) = —log |z — o]

Ce modele est appelé un two-dimensional log-gas. Dans la littérature physique on trouve
aussi I'appellation de two-dimensional one-component plasma, dont on utilisera par la
suite I'abrévation en 2DOCP (voir par exemple [AJ81,|SM76]), ou de 2D Dyson Gas
[ZW06]. En dehors de son réle comme modeéle jouet pour la physique statistique dans R?
I'intérét physique du 2DOCP est plus immédiat, puisque I'interaction logarithmique est (&
un facteur multiplicatif pres) l'interaction Coulombienne pour la physique de dimension
deux (on peut penser par exemple & la vue en coupe de fils électriques “infiniment”
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longs), ce type d’interaction apparait notamment entre les vortex dans 1’étude de la
supraconductivité (cf. [Serl5]) ou de la mécanique des fluides bi-dimensionnels [MP82].
Le gaz de Coulomb bi-dimensionnel est également étudié en raison de ses liens avec la
théorie des matrices aléatoires non-Hermitiennes, que 'on explicitera en Section [1.1.2

Les gaz de Riesz.

d>1, glx—y)=|r—y|™®, max(d—2,0)<s<d

Le cas s = d — 2 (pour d > 3) correspond (& un facteur multiplicatif pres) a l'interaction
Coulombienne en dimension d, en particulier le cas d = 3,s = 1 présente un intérét
physique évident. Les cas Riesz généralisent cette interaction et permettent notamment
d’observer l'influence de la nature exacte des interactions sur les propriétés du systeme.

On fera parfois référence au cas des interactions logarithmiques (en une ou deux dimensions)
comme “les cas logarithmiques”, on parlera aussi des “cas Coulomb” pour le 2DOCP ou pour
d > 3,s =d— 2 et, par opposition, des cas “non-Coulomb”.

On impose peu de conditions directes sur le potentiel V. La principale exigence est qu’il soit
fortement confinant, c’est-a-dire qu’il vérifie une certaine condition de croissance & 'infini qui a
pour effet d’éviter qu'une fraction non nulle des particules ne s’échappent.

1.1.2 Matrices aléatoires

Une motivation importante pour 1’étude des gaz logarithmiques est leur lien avec la théo-
rie des matrices aléatoires, dans laquelle une idée centrale est que “les valeurs propres se re-
poussent logarithmiquement”. Une étude historique récente [DF15] fait remonter 'apparition
des matrices aléatoires en mathématiques aux travaux d’Hurwitz en 1897, on cite généralement
larticle [Wis28| de 1928 dii & Wishart pour les applications en statistiques, et Wigner [Wigh8|
pour une motivation liée a la physique quantique, qui est celle que nous allons présenter succin-
tement. L’étude des matrices aléatoires présente de nombreuses autres applications, que ce soit
en physique, en télécommunications ou encore en finance.

Pour définir une matrice aléatoire de taille N x N, on peut par exemple :

— Fixer la loi jointe de ses N? coefficients.

— Considérer une mesure de probabilité “abstraite”, par exemple la mesure de Haar sur un

groupe compact de matrices.

— Chercher une variable aléatoire dont la loi soit invariante sous certaines opérations ma-

tricielles (par exemple, sous I’action du groupe unitaire ou orthogonale par conjugaison).
Les modeles présentés dans cette section possédent la propriété importante que la loi jointe de
leurs valeurs propres peut étre calculée exactement et correspondent a la loi de particules avec
interaction logarithmique en dimension 1 ou 2.

a. Une motivation physique des matrices aléatoires

Dans le formalisme de la mécanique quantique, un systeme physique est représenté par un
vecteur dans un espace de Hilbert H et son évolution est encodée par l’opérateur Hamiltonien,
qui est un opérateur Hermitien A sur H correspondant aux interactions du systéme. Le spectre
de A joue alors un réle crucial dans ’analyse, les valeurs propres correspondant aux “niveaux
d’énergie” du systeme. Si le systéme est trés complexe (par exemple un noyau lourd), déterminer
théoriquement les valeurs propres de A devient une tache difficile dés que I'on dépasse les niveaux
d’énergie les plus bas.
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Recent theoretical analyses have had impressive success in interpreting the detai-
led structure of the low-lying excited states of complex nuclei. Still, there must come a
point beyond which such analyses of individual levels cannot usefully go. [Dys62} p.1]

Le changement de paradigme suivant est alors proposé : au lieu de déterminer exactement A
et ses niveaux d’énergie, on cherche plutét a connaitre les propriétés statistiques des niveaux
d’énergie d’'un opérateur A “général”, vérifiant certaines conditions de symétrie correspondant
aux invariances du systeme physique.

The result of such an inquiry will be a statistical theory of energy levels. The
statistical theory will not predict the detailed sequence of levels in any one nucleus,
but it will describe the general appearance and the degree of irregularity of the level
structure that is expected to occur in any nucleus which is too complicated to be
understood in detail. [Dys62} p.1]

Cela évoque I'idée fondamentale de la physique statistique a la différence suivante pres : tandis
que la physique statistique renonce a connaitre [’état eract du systéme - tous les états de méme
énergie étant équiprobables, la théorie statistique des niveaux d’énergie renonce, elle, a connaitre
la nature exacte du systéme et de ses interactions. Pour reprendre les mots de [Dys62, p.1] cela
constitue

a mathematical idealization of the notion of “all physical systems with equal
probability”™. (...) We picture a complex nucleus as a “black box” in which a large
number of particles are interacting according to unknown laws. The problem is then
to define in a mathematically precise way an ensemble of systems in which all possible
laws of interactions are equally probable.

D’une part, puisque les interactions sont représentées par un opérateur, on fait 'hypothese que
des interactions générales peuvent étre représentées par un opérateur tiré au hasard dans un
certain ensemble ; d’autre part on peut chercher a approcher le spectre d’un opérateur aléatoire
en considérant la limite du spectre d’'une matrice aléatoire de taille N quand N — oo. On ne
tentera pas dans la suite de justifier physiquement les modeles de matrices aléatoires considérés,
mais une idée importante de la théorie est I’espoir que les propriétés statistiques intéressantes
ne dépendent pas trop fortement de la maniere précise dont la modélisation est effectuée et sont,
en un certain sens, universelles.

b. Cas Hermitien

Le cas des matrices aléatoires a valeurs propres réelles est de loin le plus étudié, on se limitera
ici & présenter quelques modeles et résultats en rapport avec notre étude.

A N fixé, on définit trois modeles de matrices aléatoires en fixant la loi des coefficients
(M; j)i<ij<n de la maniere suivante (voir par exemple [AGZ10, Section 2.5] pour une définition
précise) :

G.O.E. Les coefficients M; ; sont des variables aléatoires Gaussiennes centrées réelles de
variance proportionnelle & 1/N, indépendantes a cela prés que M doit étre symétrique.

G.U.E. Les coefficients M; ; sont des variables aléatoires Gaussiennes centrées complezes de
variance proportionnelle & 1/N, indépendantes & cela prés que M doit étre Hermitienne
(en particulier, la diagonale est réelle).

G.S.E. Les coefficients M; ; sont des variables aléatoires Gaussiennes centrées quaternio-
niques de variance proportionnelle & 1/N, indépendantes & cela pres que M doit étre
auto-duale.
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Les conditions de symétrie imposées équivalent chacune a une certaine invariance, au sens de la
mécanique quantique, du systéeme physique dont la matrice est supposée représenter I'interaction.
Par ailleurs, cela garantit que les N valeurs propres de M sont réelles. La loi jointe des N valeurs
propres peut étre exprimée exactement et s’écrit

N
. N .
dPﬁ%t(XN) =Cgexp | —f3 Z —log|z; — x| — Z 5|xl\2 dX N (1.1.3)
1<i#j<N i=1

ou Cg est une constante de normalisation dont I'expression est connue. La valeur de 3 est a
choisir en fonction du modele considéré, les valeurs classiques sont 5 =1 (GOE), 5 =2 (GUE)
et f = 4 (GSE) mais avec notre convention d’écriture pour ’énergie d’interaction (la somme
portant sur ¢ # j et non sur ¢ < j) ces valeurs doivent étre divisées par 2. On voit que (1.1.3)
correspond a la loi des particules d’un one-dimensional log-gas avec un potentiel quadratique et
un bon choix de 8 (notons que la convention usuelle en matrices aléatoires est de ne faire porter
le facteur 8 que sur 'interaction par paires et non sur le potentiel quadratique, contrairement &
la convention choisie pour la mesure de Gibbs Py g (1.1.1))).

Il est alors naturel de se demander si I’on peut dépasser le cadre de ces trois valeurs classiques
et trouver, pour tout S > 0, un modele de matrices aléatoires & coefficients indépendants dont
la loi jointe des valeurs propres serait donnée par Py g. Les auteurs de [DE02] construisent un
modeéle de matrices tridiagonales répondant par I'affirmative & cette question, ce qui prolonge a
des valeurs arbitraires de 3 le lien entre matrices aléatoires et gaz de particules avec interaction
logarithmique (méme si les constructions de |[DE02] correspondent toujours a un choix de V
quadratique).

c. Cas non-Hermitien

“An ensemble of matrices whose elements are complex, quaternion, or real num-
bers, but with no other restrictions as to their Hermitian or unitary character, is of
no immediate physical interest, for their eigenvalues may lie anywhere on the com-
plex plane. However, efforts have been made (..) to investigate them and the results
are interesting in their own right.” [Meh04, Chapitre 15, p.266]

“Applications and studies of matrix ensembles with complex eigenvalues are nu-
merous.” [WZ06]

Sans chercher a trancher la question de 1'intérét de leur étude, mentionnons une application
possible des matrices aléatoires non-Hermitiennes : comme expliqué ci-dessous, la loi des valeurs
propres complexes de certains modeles de matrices aléatoires (I’ensemble de Ginibre) coincide
avec la loi des particules d'un gaz de Coulomb bi-dimensionnel pour une certaine température
(ce fait est déja observé par Dyson dans [Dys62]). Or une matrice est un objet potentiellement
plus simple a étudier qu'un systeme de particules, ne serait-ce que d’un point de vue numérique.
On renvoie aux références citées par [ZWO06] pour de plus amples connections avec les modéles
de croissance (Laplacian growth), 'analyse complexe ou encore l'effet Hall quantique.

Le principal modeéle de matrice aléatoire non-Hermitienne est obtenu en distribuant les coef-
ficients de M = (M; j)1<i,j<n comme N 2 variables aléatoires indépendantes Gaussiennes com-
plexes centrées et en imposant une normalisation sur la variance, par exemple E[Mfl] = %
Cela correspond a une loi de densité exp(—Ntr(A*A)) (& normalisation pres) par rapport a la
mesure de Lebesgue [],<; ; <y dA;; sur (R2)N* (ou A représente la matrice (A; ;)i et A* son
adjoint), et on peut alors déterminer explicitement la loi jointe des valeurs propres (en suivant
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par exemple le calcul de [Meh04, Chapitre 15])

N
dPG™(z1,...,28) = Cexp | — Z —log |z — 7] —NZ\Z¢|2 dzi...dzn, (1.1.4)
1<i<j<N i=1

ol C est une certaine constante de normalisation dont I’expression est connue. On voit que
coincide avec la loi des particules d’'un gaz de Coulomb bi-dimensionnel en choisissant V' qua-
dratique et § convenable (avec nos conventions d’écriture on trouve 8 = 1 mais les conventions
usuelles en matrices aléatoires donnent 3 = 2). Ce modele, introduit dans [Gin65], est appelé “en-
semble de Ginibre”. On peut le généraliser en choisissant un potentiel différent de V(A4) = A*A
dans 'expression de la loi comme exp(—Ntr(A*A)) [, <; j <y dAi; (3 un facteur de normalisation
pres). On obtient alors le “Random normal matrix model” tel qu’étudié dans [AHM11, AHM15]
qui correspond a une densité proportionnelle a exp(—Ntr(V(A))) [11<; j <y dAi 5, ce qui revient
a changer le potentiel de confinement du gaz.

Une particularité de ces modeles (plus précisement de la valeur de 8 correspondante) est
que le processus ponctuel associé aux valeurs propres, c’est & dire la loi sur (R?)Y de densité
dP§™ (21, ..., 2n) est déterminantal (voir par exemple [HKPV09]) . Sans rentrer dans les détails,
mentionnons simplement que cela permet un acces explicite & de nombreuses quantités comme
les fonctions de corrélations et fournit des techniques analytico-algébriques d’étude qui font
défaut pour une valeur générale de (.

d. Quelques autres modéeles

Les ensembles de Wishart définissent des “matrices aléatoires de covariance empirique”. La loi
jointe de leurs valeurs propres correspond a un gaz de particules restreint a la demi-droite R,
avec interaction logarithmique et sous l'effet d’un certain potentiel confinant, pour certaines
valeurs particulieres de 8. Ce modele admet une généralisation a § > 0, voir par exemple
[DEKV13| ou [DE02].

Comme mentionné plus haut, il est naturel de considérer une matrice aléatoire selon la mesure
de Haar sur le groupe unitaire. On appelle Circular Unitary Ensemble (C.U.E.) la loi d’une telle
matrice unitaire, ses valeurs propres appartiennent au cercle unité et leur loi jointe peut étre
explicitement calculée, elle correspond physiquement a un gaz de particules sur le cercle avec
interactions logarithmiques, pour une certaine valeur de la température 8. En autorisant 8 > 0
quelconque on obtient la loi dite du S-C.U.E. et le modéle de matrices associé est construit
dans [KNO4].

On a vu que dans le cas non-Hermitien, la connection entre matrices aléatoires et gaz de
Coulomb n’était établie que pour une valeur particuliere de 8. L’existence d’un modele matriciel
associé au gaz de Coulomb bi-dimensionnel pour § > 0 quelconque (avec, par exemple, un
potentiel quadratique) reste ouverte, l'extension des heuristiques utilisées dans la construction
de [DE02] et dévelopées par exemple dans [Edel0] n’étant pas suffisante. Un tel modele donnerait
certainement lieu a de nouvelles voies dans I’étude numérique et théorique du 2DOCP.

e. Pourquoi ce lien?

On peut se demander quelle est l'origine de cette “répulsion logarithmique” entre les va-
leurs propres, qui donne lieu a l'identification entre valeurs propres aléatoires et particules en
interaction. Sans chercher une raison ontologique, mentionnons toujours une raison pratique :
partons d’une matrice aléatoire dont on connait la loi des coefficients (par exemple, réels) sous
la forme d'une densité P(A; ;) [[1<; ; <y dAi; sur RN, Pour déterminer la loi induite des va-
leurs propres, on cherche a diagonaliser A, ce qui revient a faire le changement de variables
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A — (valeurs propres, vecteurs propres). La partie du Jacobien correspondant au passage des
coefficients {A; j}1<ij<nN aux racines (Ai,...,An) du polynéme caractéristique (i.e. aux valeurs
propres) fait apparaitre un déterminant de Vandermonde

VDM()\l, - ,)\N) = det ({/\z_l}lgi,jgN) ,

dont I'expression est bien connue et s’écrit effectivement comme ’exponentielle des interactions
logarithmiques entre les \;. De maniére tres simplifiée, on peut dire que le volume infinitésimal
sur RV en coordonnées “valeurs propres, vecteurs propres” fait apparaitre VDM(\1, ..., An) (en
particulier il est rare d’avoir des valeurs propres trés proches les unes des autres).

1.1.3 Une autre motivation : la théorie de I'approximation

La limite 8 — oo dans revient formellement & ne considérer que les minimiseurs de
I’énergie Hy. Dans le cas d’'un gas de Coulomb bi-dimensionnel, ces configurations d’énergie
minimales, appelées points de Fekete, jouent un role important en théorie de I’approximation.
Pour simplifier, supposons que le potentiel V vaut +o0o en-dehors d’un compact K de C sur lequel
il vaut 0. Déterminer les points de Fekete revient alors a minimiser 'interaction logarithmique
entre N points de K. Cette question est reliée a la théorie de I’approximation de la maniere
suivante : cherchons a déterminer N points d’interpolation {z1,...,zx} dans K tels que la
relation

/f dz-ijf ;)

soit exacte pour les polyndémes de degré au plus N —1. On voit qu’il faut (et il suffit) de calculer
les coefficients w; tels que fK 2k = Z;V 1 wjz pour 0 < k < N—1, et ce calcul est facile si ’on sait
inverser la matrice de Vandermonde des {z; } j=1...n - La stabilité numérique de cette opération est
d’autant plus forte que le conditionnement (condition number) de la matrice de Vandermonde
est petit, c’est a dire que det VDM(z1, ..., zx) est grand. Vu l'expression de VDM(z1, ..., zN), les
meilleurs points (au sens du conditionnement) pour 'interpolation sont donc les points de Fekete.
On renvoie & [ST97] pour une présentation détaillée (avec un choix de V' plus général) et des
références. Bien sir, ces questions d’approximation se posent aussi sur des variétés, on renvoie
par exemple a [HS04] pour une introduction au réle joué par les interactions de type Riesz.

1.1.4 Le cas a deux composantes

Le dernier résultat de cette theése, présenté au chapitre [6] , traite d’un cas différent ou les
charges ponctuelles peuvent prendre deux valeurs opposées +1. Si on dispose de N charges
positives z1,...,zy et N charges négatives y1,...,yny dans un compact A de R%, leur énergie
d’interaction vaut

HAT (XN, Yn) = Y glawi—z)+ Y. gwi—y)—2 Y,

1<i#j<N 1<i#j<N 1<ij<N

et il est clair que cette quantité peut prendre des valeurs arbitrairement négatives, et vaut
méme —oo deés que se forme un dipdle (c’est a dire qu'une particule chargée positivement et
une particule chargée négativement occupent la méme position dans I’espace). En particulier, la
convergence de la fonction de partition associée

Zwg = [ exp(-BHET (X, ) ndVy
A
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n’est pas immédiate. Il est d’ailleurs facile de voir qu’aucun des choix précédents de g ne peut
donner lieu & une valeur finie de Zy g (et ce pour aucun (), hormis les interactions logarith-
miques. On se limitera au cas d = 2 et g(z — y) = —log |z — y| et on prend pour A le carré
[0,1]2. Ce modele est appelé two-dimensional two-component plasma ou 2D2CP, et bien défini
pour des températures assez hautes (8 < 2).

Le 2D2CP, en plus d’étre un modele jouet de la physique statistique & deux dimensions (relié
entre autres a des systémes de vortex provenant de la supraconductivité, ou de la mécanique des
fluides 2D cf. [BG99|), est intimement lié & d’autres modeles importants : le modele de Sine-
Gordon et le modele XY. Une particularité remarquable de ces modeles est 'existence d’une
transition de phase “d’ordre infini”, qui n’est pas reliée & un manque de régularité de la fonction
de partition mais a un changement critique du comportement a longue distance des corrélations,
voir [KT73] pour I'article fondateur et [F'S81] pour une discussion dans le cadre du 2D2CP, voir
aussi [Spe97] pour une synthese. Une autre motivation vient du lien entre le 2D2CP et la fonction
de partition du “chaos Gaussian multiplicatif” (cf. [LRV15]), que 'on peut écrire formellement
comme [ €@ dz ot h(z) est un champ libre Gaussien (Gaussian Free Field). Ces liens sont
discutés en détail dans 'annexe de [LSZW15| (voir chapitre [6]).

1.1.5 Etat de I'art

a. Echelle macroscopique

On présente dans cette section les principaux résultats concernant le comportement ma-
croscopique des systemes de particules avec interaction Coulomb, Riesz, ou logarithmiques (en
fait la plupart des énoncés qui suivent sont valables dans un cas plus général). On renvoie
a [Ser1b, Chapitre 2] pour une exposition plus détaillée, des références historiques et une preuve
de ces résultats.

Le comportement global (a I’échelle macroscopique O(1)) des systémes de particules décrits
plus hauts est bien compris. Faisons les hypothéeses suivantes sur V :

— (A1) V est semi-continu inférieurement et minoré.

— (A2) On a limpy|o V(2) + 29(7) = +00.

— (A3) L’ensemble {z € R4V () < 400} est de capacité strictement positive.

— (A4) Tl existe a > 0 tel que [pq e V@) dr < +o0.

Sans chercher a définir la notion de “capacité”, notons que (A3) est en particulier vraie si V
ne prend jamais la valeur +o00, ou bien si 'ensemble en question est de mesure de Lebesgue
strictement positive, mais (A3) autorise aussi, par exemple, le cas ou V = 400 en dehors du
cercle unité (ou d’une demi-droite) sur lequel il est constant.

On note P(R%) I’ensemble des mesures de probabilité sur R? et on définit la fonctionnelle
d’énergie suivante

16 = [ o - yaut@ydn(e) + [ V(o). (1.1.5)

Le théoréme suivant reléve de la théorie classique du potentiel.

Théoréme 1. Sous les hypothéses (A1)—(A3), le minimum de I sur P(R?) existe et est fini,
il est atteint par une unique mesure f.q dont le support ¥ est compact et de capacité positive.

On appelle peq la mesure d’équilibre associée au potentiel V. Mentionnons quelques cas
particuliers :
— Dans le cas d'un gas logarithmique 1D avec potentiel quadratique la mesure d’équilibre
obtenue est (& une mise a I’échelle pres) la loi du demi-cercle de Wigner ( Wigner’s semi-
circular law), omniprésente en théorie des matrices aléatoires Hermitiennes et de densité

V 4 — l'zdl']_‘xlgz
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— Dans le cas d'un gaz logarithmique 2D avec potentiel quadratique, ce qui correspond a
Pensemble de Ginibre (défini en Section pour une certaine température, la mesure
d’équilibre est (a4 une éventuelle mise a ’échelle pres) la loi circulaire (circular law), uni-
forme dans le disque unité, qui joue en théorie des matrices aléatoires non-Hermitiennes
un role analogue a la loi du demi-cercle.

— Sid > 3 et V quadratique, dans le cas Coulombien la mesure d’équilibre est uniforme
dans une certaine boule de dimension d.

— Plus généralement, si V' est radial et assez régulier, la mesure d’équilibre est, dans le cas
Coulombien, supportée sur une boule et de densité proportionnelle a AV

On établit maintenant le lien entre ce résultat de théorie du potentiel “abstraite” et les

systemes de physique statistique décrits plus haut. Pour cela, on considére la mesure empirique
des particules, définie par

On a bien str puy € P(R?). Rappelons que I'on voit Xy comme une variable aléatoire dans
(RHN de loi Py g et py comme une variable aléatoire & valeurs mesures.

Théoréme 2. Sous les hypothéses (A1)—(A4), les variables aléatoires {un}n convergent
presque stirement vers floq quand N — 0o. De plus, la loi de pn obéit a un principe de grandes
déviations d vitesse N avec pour fonction de tauz (I — minT).

On définira un “principe de grandes déviations” en section|[1.2.3], pour I'instant on peut penser
a la seconde partie du Théoréme [2] comme un résultat exprimant formellement 1’approximation

suivante
—N2(I(u)—min I)

Py g(pn = 1) ~Nooo € :
En particulier, si pt # fieq on a I(p) > I(fteq) €t la probabilité que pyn “ressemble” & p décroit
comme exp(—N?a) avec v = I(p) — I(eg)-
Le résultat du Théoreme [2 est établi dans [BAG97| dans le cas particulier des matrices
aléatoires Hermitiennes (et dans [BAZ98| pour des matrices de Ginibre réelles, qui différent
légerement du modele non-Hermitien présenté dans , une preuve plus générale est donnée
dans [HPOO], voir aussi [CGZ14] et [Ser15, Chapitre 2] pour des interactions g assez générales.
Cela conclut tres largement 1’étude comportement macroscopique encodé par ’observable .
En effet :
— {un} N converge vers une limite déterministe fioq qui est I'unique minimiseur de la fonc-
tionnelle I, et 'on connait un principe de grandes déviations autour de peq a vitesse
N2

— Il n’y a pas universalité a I’échelle macroscopique, car fioq et ¥ dépendent fortement du
potentiel V' (et de linteraction g). La dépendance de ¥ par rapport & V, par exemple,
est “compliquée” et non réguliere en général.

— La température (si on ne la fait pas dépendre de N) ne joue aucun role a ’échelle

macroscopique, puisque les minimiseurs de I et S1 sont évidemment les mémes pour tout
8> 0.

b. Le one-dimensional log-gas

Le cas d =1, g(x —y) = —log|x — y| a été particulierement étudié, notamment en raison
de son lien avec les matrices aléatoires. On résume ici quelques résultats en relation avec notre
propos.



1.1. CONTEXTE ET MOTIVATIONS 11

Processus ponctuel limite. L’observable microscopique est ici le processus ponctuel &
’échelle N~!. Plus précisément, prenons le cas d’un potentiel quadratique tel que la
mesure d’équilibre soit la loi du demi-cercle de Wigner. Fixons x €] — 2, 2[ ('intérieur du
support de la mesure d’équilibre) et considérons ’observable

N
Cx XN =D On(ai—a) » (1.1.6)
i=1
a valeurs dans X, ’espace des configurations de points. L’existence d’un comportement
limite (en loi) pour ces configurations de points était connue pour les trois valeurs “clas-
siques” de 3 correspondant aux modeles classiques de matrices aléatoires (GOE, GUE,
GSE), gréace a la structure particuliere de la loi des valeurs propres dans ces cas. Dans
'article fondamental [VV09|, Valko et Virag ont montré 'existence d’une limite pour la
loi de C%; pour tout 8 > 0, dans le cas d’un potentiel quadratique. Cette limite, le “Sine-
beta process”, est une mesure de probabilité sur X’ (un processus ponctuel aléatoire) notée
Sineg et ne dépend de x que par un changement d’échelle d’un facteur v4 — 22, qui est
la densité de la loi du demi-cercle au point x.

Universalité. Dans les travaux [BEY14,BEY12] (voir aussi le résumé [Boul3|), Bourgade,
Erdos et Yau ont étudié I'universalité du comportement microscopique des S-ensemble
par rapport au potentiel V. Le résultat peut s’énoncer informellement ainsi : si V' est
analytique, de dérivée seconde minorée, et vérifie certaines conditions génériques, alors le
comportement microscopique du log-gas 1D avec potentiel V' et celles du log-gas 1D avec
potentiel quadratique sont asymptotiquement les mémes (& une mise a 1’échelle pres). En
particulier, en ce sens, le processus Sineg est universel.

Fluctuations. Les fluctuations des valeurs propres autour de la mesure d’équilibre 1oy sont
bien comprises dans le cas uni-dimensionnel.

1. Le cas de la plus grande (ou des plus grandes) valeurs propres a fait ’objet de beaucoup
d’attention. Quand jieq est la loi du demi-cercle, on s’attend a ce que la plus grande
valeur propre soit ~ 2. Il y a effectivement convergence presque siire vers 2, et les
grandes déviations autour de cette valeur sont connues (voir par exemple [BADGO1]),
ainsi que les fluctuations & 1’échelle N~2/3 qui sont données par la loi de Tracy-Widom
définie dans [TW94, TW96| et étendue a tout 5 dans [RRV11]. Plus généralement, le
processus ponctuel des plus grandes valeurs propres, c’est a dire la loi de C¥; pour
x = 2 dans admet une limite qui est le processus d’Airy (généralisé a tout [
dans [RRV11,KRV15]).

2. Les statistiques linéaires, c’est a dire la loi de Y-V, f(z;) — N [ f(z)dpeq(z) pour
une fonction test assez réguliere f, obéissent a un théoréeme central limite d’'un genre
particulier, puisque contrairement au cas de variables aléatoires indépendantes, il n’y a
pas de normalisation en 1/v/N (la variance des fluctuations reste bornée quand N tend
vers l'infini, du fait des interactions entre valeurs propres). Un tel théoréme n’est valide
que dans le cas ou le support de la mesure d’équilibre est connexe (cas one-cut), sinon
(cas multi-cut) il peut y avoir un comportement quasi-périodique des fluctuations.
Un premier résultat de ce type a été établi dans [Joh98|, voir aussi [Shcl3}|Shcl4,
BG13b, BG13a] pour des généralisations, qui vont de pair avec un développement
asymptotique de log Zy g.

Mentionnons aussi une autre direction possible dans I’étude des systémes a une dimension, qui
consiste a remplacer 'interaction logarithmique par des interactions plus générales qui possedent
le méme type de singularité en 0, et donc a étudier I'universalité du comportement microscopique
en fonction de g, voir |[GV14, Venl3]
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Les principales techniques utilisées dans les travaux mentionnés ci-dessus sont assez particu-
lieres au cas de la dimension 1 : utilisation de la représentation matricielle des -ensembles (qui
n’existe pas en général pour le cas complexe, par exemple), polyndémes orthogonaux, mouvement
Brownien de Dyson (Dyson Brownian motion, voir par exemple |[Taol2, Section 3.1]), et équa-
tions de boucles (qui peuvent s’écrire en toute dimension mais sont particulierement maniables
en dimension 1).

c. Le gaz de Coulomb bidimensionnel

Le gaz de Coulomb a deux dimensions a surtout été étudié mathématiquement pour la valeur
particuliere de la température a laquelle il coincide avec la loi des valeurs propres de matrices
aléatoires non Hermitiennes.

L’ensemble de Ginibre. Considérons encore 1'observable “processus ponctuel microsco-

pique” définie par
N

T . v
CN : XN —> 251\71/2(%*1) ;
i=1
pour z € R? et rappelons que la mesure d’équilibre associée a I’ensemble de Ginibre est la mesure
uniforme sur le disque unité. Dans ce contexte, les processus ponctuels C%; ont une limite en loi :

1. Si|z| > 1, cette limite est triviale (il n’y a aucune particule, on voit presque siirement la
configuration vide).

2. Si |z| = 1, cette limite est un processus déterminantal de noyau explicite que 1'on peut
trouver par exemple dans 'annexe de [BS09]. Elle ne dépend pas de la position de z sur
le cercle unité.

3. Si |x| < 1, cette limite est un processus déterminantal (le processus ponctuel de Ginibre)
de noyau explicite qui est déja mentionné dans l'article fondateur [Gin65|. Elle ne dépend
pas de x dans l'intérieur du disque.

La structure déterminantale de ces processus ponctuels permet de calculer explicitement de
nombreuses quantités. On renvoie a [HKPV09] et notamment [HKPV09, Section 4.3.7].

En particulier, le comportement des fluctuations est bien compris : I’analogue des résultats
1d est le suivant : le plus grand module des valeurs propres suit une loi de Gumbel autour de la
valeur 1 [Ko0s92,Rid03| (pour un résultat d’universalité dans cette direction, voir [CP14]) et les
statistiques linéaires obéissent a un théoréme central limite [RV07].

Le “Random Normal Matrix model”. Comme mentionné dans la Section il s’agit
d’une généralisation naturelle de I’ensemble de Ginibre en remplacant le potentiel quadratique
par un potentiel confinant V' supposé analytique. Le processus ponctuel des valeurs propres
est encore déterminantal, mais son noyau est plus compliqué que dans le cas V' quadratique.
Néanmoins, dans [AHM11, AHM15|, Ameur, Hedenmalm et Makarov établissent un résultat
d’universalité : si x est dans 'intérieur de ¥ alors C§; converge en loi (apres un scaling dépendant
de la mesure d’équilibre) vers la loi du processus ponctuel de Ginibre. Ils montrent de plus un
théoréme central limite analogue a [RV07]. Les méthodes utilisées sont trés dépendantes de la
valeur particuliere de S et du caractere analytique de V.

Quelques résultats physiques. On mentionne ici quelques pistes de réfléxion (mathéma-
tique) inspirées par la littérature (physique) autour du 2DOCP.

Fluctuations de charges. La question de savoir a quelle vitesse et & quelle précision les
charges ponctuelles se répartissent dans le support X de maniere a ressembler a fieq
est bien stir fondamentale. Dans |[JLM93|, Jancovici, Lebowitz et Manificat étudient la
probabilité d’avoir une non-neutralité locale, c’est & dire que le nombre de points Ny
dans un domaine A C X differe de pieq(A), et distinguent trois régimes selon la valeur
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Na—Nptoq (A . . .,
de %ﬁq() On verra par la suite qu’on peut obtenir rigoureusement des estimées

dans le méme esprit, mais moins précises, et la question de justifier mathématiquement
les résultats de [JLM93| reste, a notre connaissance, ouverte. Il est notable que cette
question ait été résolue dans [NSVO§| pour le cadre légérément différent des zéros de
fonctions analytiques aléatoires, dont 1’étude présente des similarités avec les valeurs
propres de matrices aléatoires : les auteurs trouvent, dans ce contexte, exactement les
trois régimes de déviation prédits par [JLM93| dans le contexte du 2DOCP.

Cristallisation. Une question fondamentale dans I’étude du gaz de Coulomb a deux dimen-
sions est celle de son comportement & basse température (formellement, quand 8 = 400).
La mesure Py g doit alors se concentrer sur les minimiseurs de Hy, et on s’attend a ce
que ces minimiseurs aient une structure ordonnée. La conjecture généralement admise est
la suivante (formulée ici informellement, voir par exemple l'article de survol [BL15] pour
des précisions et des références)

Conjecture 1. Quand N — oo les minimiseurs de Hy prennent la forme d’un réseau
triangulaire, appelé aussi “réseau d’Abrikosov’.

La littérature physique considére ce probléme comme résolu (voir par exemple [AJ81])
et pousse la question plus loin : quel est le comportement du systeme quand (§ est tres
grand, mais fini? Certains résultats affirment que le systeme “cristallise” au-dela d’un
certain f3 critique dont la valeur est estimée autour de 140 [BST66,PH73,|GCC79,dLP82],
mais le sens a donner & cette “cristallisation” est ambigu (il ne peut, pour des raisons
évidentes d’entropie, s’agir d’un cristal parfait). Voir aussi [Sti98] pour un avis critique
sur ces résultats. Le point crucial pour mieux comprendre ces questions serait d’avoir
acces aux fonctions de corrélations a deux points du systeme pour 8 — oo, ou du moins a
leur vitesse de décroissance quand |x —y| — oo. Il se pourrait que pour (3 assez grand, ces
fonctions possédent (au moins sur des distances assez grandes) un comportement pério-
dique assimilable a une “cristallisation” du systéme, sans pour autant que les particules
ne forment un cristal parfait.

1.1.6 Le comportement microscopique

D’apres la section précédente, on sait que les N particules vont (typiquement) se concentrer
dans un compact ¥ de R? et se répartir selon une mesure Heq qui ne dépend pas de la température.
Mais pour ce faire, les particules peuvent s’arranger de multiples fagons & I’échelle microscopique
N—1/d Les simulations numériques (ou I’étude théorique dans les cas ot 1’on dispose de formules
explicites, par exemple pour les modéles classiques de matrices aléatoires) montrent que cette
répartition microscopique dépend, elle, de la température. Grossierement, plus la température
est haute (B petit), plus le systéeme est désordonné a 1'échelle N —1/d yoir par exemple les
figures [1.1.6] et a la page suivante. Le principal but de cette theése est de comprendre quels
phénomenes régissent le comportement microscopique en fonction de la température. On mettra
en évidence le role d'une fonctionnelle d’énergie libre Fg := BWele 1 ent qui gouverne la loi
des configurations de points et fait apparaitre leur dépendance en (. Ici WO est un terme
d’énergie qui correspond a la limite de I’énergie d’interaction Hy et ent est un terme d’entropie
qui correspond & la limite (en un certain sens) des éléments de volume dX .
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FIGURE 1.1 — Un 2DOCP avec N = 100 particules, sous potentiel quadratique, a basse tempé-
rature 8 = 400

F1GURE 1.2 — Un 2DOCP avec N = 100 particules, sous potentiel quadratique, a haute tempé-
rature =5
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1.2 Meéthodes utilisées

1.2.1 Quelques notations et définitions
a. Généralités

Si X est un espace métrique, on le munit de sa tribu Borélienne et on note P(X) I'espace des
mesures de probabilité sur X. On note Lip; (X) I'ensemble des fonctions F' qui sont 1-Lipschitz
sur X et telles que ||F||oc < 1. On définit une distance sur P(X) par

dp(x)(Pr, Po) = sup {/ F(dP, —dPy) | F e Lipl(X)} .
X

Il est bien connu que dp(x) métrise la convergence faible sur P(X). Si P € P(X)et f: X — R™
est mesurable sur X on note Ep[f] Pespérance de f sous P. Si A C X, on note A l'adhérence
de A et A son intérieur.

On note Leb la mesure de Lebesgue dans R%. Si A € R? est mesurable on note |A| sa masse
sous Leb. On dénote la diagonale d’un produit cartésien A x A par A.

Pour R > 0, on note Cg I'hypercube [~R/2, R/2]%. Pour tout m > 0 on note II" la loi d'un
processus de Poisson ponctuel d’intensité m dans R

On note a4 la partie positive d’un nombre réel i.e. a; = max(0,a).

b. Processus ponctuels (aléatoires)

On note X l'espace des configurations de points dans R?. Formellement, c’est I’espace des me-
sures de Radon purement atomiques qui donnent une masse entiere aux singletons (cf. [DVJ88|).
Muni de la topologie de la convergence vague des mesures de Radon, c’est un espace Polonais
(et on note dy une distance associée). On notera généralement C une configuration de points et,
avec un léger abus de notation, on confondra souvent ’ensemble C des points avec la mesure de
Radon }_ cc dp. On définit un processus ponctuel aléatoire (random point process) comme la loi
d’une configuration de points, donc un élément de P(X'). On dit que P € P(X) est stationnaire
(et on note P € P,4(X)) s'il est invariant par I’action de R? sur X par translations. Si P est
stationnaire, le rapport du nombre moyen de points dans un domaine A non vide et du volume
de A est constant et on appelle “intensité” de P cette quantité.

Pour N > 1, soit ~x la relation d’équivalence sur (R?)N définie par (z1,...,2x5) ~y
(y1,--.,yN) si et seulement si il existe une permutation 0 € Gy (le groupe symétrique a N
éléments) telle que x; = Yo(i) POur i = 1,..., N. On dénote par (Rd)N/GSN I’ensemble quotient
et par mx la projection canonique (RY)N — (R?)N/&y. L’ensemble des configurations finies
dans X peut étre identifié & {0} U ULZ (RDY /S y.

Si A c BY/Gy on définit A c BY comme A := Ucea C. 11 est facile de vérifier que A est
le plus grand sous-ensemble de (R?)? telle que I'image directe de A par my est A. On appelle
“vyolume de A” et on écrit (avec un léger abus de notation) Leb®" (A) la quantité Leb®N (A).

1.2.2 Observables considérées

Il s’agit ici de discuter la notion de “comportement microscopique”. Pour caractériser le
comportement des particules (ou des valeurs propres) a 1’échelle N —1/d plusieurs quantités
peuvent étre considérées.
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1. Le processus ponctuel (non-moyenné) obtenu en zoomant autour d’un point fixé. Cela
revient a fixer x € X et a considérer ’observable

N
CR: Xn =D Oni/aa, ) » (1.2.1)
=1

a valeurs dans X. Cette observable encode la configuration de points vue & 1’échelle N—1/4
autour du point z.

2. Le champ empirique obtenu en moyennant C%; sur le voisinage d’un certain point. De
maniere équivalente, cela revient a choisir le point de centrage aléatoirement sur un petit
voisinage de z. Formellement, on fixe x € 3 et un voisinage €2 de z, et on définit

1

a valeurs dans P(X).
— Si Q est de taille indépelrndante de N, on dit que la moyenne est macroscopique.
— Si Q est de taille e = N~a1° pour § € (0, é) on dit que la moyenne est mésoscopique.

Nos méthodes ne permettent pas de caractériser la limite des processus non-moyennés si son
existence n’est pas connue a priori, mais on peut en revanche essayer d’établir des principes
de grandes déviations pour les champs empiriques. Commencons par donner la définition d’un
principe de grandes déviations.

1.2.3 Grandes déviations
a. Principe de grandes déviations

Définition 1.2.1. Soit S un espace métrique, et I : S — [0,+00] une fonctionnelle semi-
continue inférieurement. Soit {ry}n une suite de réels positifs et {un}n une suite de mesures
de probabilité sur S. On dit que {un}n obéit a un principe de grandes déviations (PGD) d
vitesse ry avec fonction de taux I si pour tout A C S on a

1 1
—inf I <liminf — log un(A) < limsup — log un(A) < —inf I, (1.2.3)
A N—oo TN N—oo TN A
ot A (resp. A) désigne Uintérieur (resp. 'adhérence) de A dans S. On dit que la fonction de

taux I est “bonne” si ses ensembles de sous-niveaux sont compacts.

On peut penser a la chaine d’inégalités ([1.2.3)) comme
un(A) ~ exp(—ry i%f I).

Une référence pour les questions de grandes déviations est [DZ10], on peut aussi citer [RAS09)
pour une introduction tournée vers les applications a la physique statistique.

Si la loi d’une suite de variables aléatoires { X} obéit & un principe de grandes déviations
avec fonction de taux I, on voit que Xy va se concentrer, avec grande probabilité, autour des
minimiseurs de la fonction de taux I. En particulier, en utilisant le lemme de Borel-Cantelli,
il n’est pas difficile de voir que si I admet un unique minimiseur alors c’est la limite presque
siire des Xpy. Dans le cas général, si I est une bonne fonction de taux, I’ensemble des ses
minimiseurs est compact, et la distance de X a ce compact tend vers 0 presque siirement. C’est
en cela qu’un principe de grandes déviations “gouverne” le comportement asymptotique d’une
suite de variables aléatoires : le comportement typique est obtenu en cherchant les minimiseurs
de la fonctionnelle de taux, et la probabilité d’étre a distance fixée des minimiseurs décroit
exponentiellement avec une vitesse quantifiable.



1.2. METHODES UTILISEES 17

b. Entropie relative et théoréme de Sanov

Soit S un espace métrique (par exemple Polonais), et u,r deux mesures de probabilités
(Boréliennes) sur S. L’entropie relative (ou divergence de Kullback-Leibler) de p par rapport a
v est définie par

du
E = log —
nt[p|v] /X og dydu,

si p est absolument continue par rapport & v (on note alors % la dérivée de Radon-Nikodym
de p par rapport a v) et +oo sinon. Il n’est pas difficile de vérifier que I'entropie relative est
toujours positive, et semi-continue inférieurement en la variable p, de plus on a Ent[u|v] = 0 si
et seulement si y = v.

Donnons maintenant une interprétation probabiliste (informelle) de Ent[u|v]. On suppose
qu'on simule N fois la loi v et qu’on obtient les résultats x1,...,zy. Quand N est grand,
I’histogramme des valeurs obtenues doit ressembler a v elle-méme : c’est la loi des grands
nombres. Quelle est la probabilité que cet échantillon ressemble plutét a la distribution de p?
La réponse décroit exponentiellement vite avec N, et en fait est (au premier ordre) comme
exp(—N Ent[u|v]). Une formulation rigoureuse est donnée par le théoreme de Sanov (voir
[San61], on cite ici [RAS09, Section 5.2]).

Théoréme 3 (Sanov). Soit S un espace polonais et v une mesure de probabilité sur X. Soit
{Xk}r>1 des variables aléatoires i.i.d sur S de loi v. On note Ly la mesure empirique des N
premiéres variables

1 N
LN = N};éxk,

qui est une mesure de probabilité aléatoire sur S. La loi de {Ln}n obéit un principe de grandes
déviations a la vitesse N avec pour bonne fonction de tauz p— Ent[u|v].

D’aprés la loi des grands nombres, si f est continue bornée sur S, on a [ fdLy — [ fdu
presque strement quand N — oo. De plus, {Ly}xn converge presque slirement vers p au sens
de la convergence faible des mesures de probabilités. Le théoreme de Sanov précise les grandes
déviations autour de ce comportement typique, qui sont gouvernées par ’entropie relative.

c. Comment établir un principe de grandes déviations 7

Ce paragraphe n’est pas rigoureux mais sert a éclairer et illustrer la démarche qu’on mettra
en ceuvre a plusieurs reprises dans cette these afin d’établir un principe de grandes déviations.
De maniere générale, on voit que pour montrer ([1.2.3)) il faut établir deux inégalités :
— Une borne supérieure, qui consiste & montrer que les événements “déviants” n’arrivent
pas avec trop grande probabilité.
— Une borne inférieure, qui consiste a montrer qu’un événement, méme non typique, arrive
quand méme - parfois - avec une probabilité quantifiable.
Plagons-nous dans le cas d’un systeme de particules en interaction, supposons qu’on dispose
d’une fonctionnelle d’énergie ‘H y définie sur (Rd)N et qu’on considere la mesure de probabilité de
type Gibbs donnée par dPy(Xy) := % exp(—Hn)dXy (on oublie ici le role de la température),
ol Zy est la constante de normalisation (la fonction de partition). Soit Ox une observable &
valeurs dans S, et ry une vitesse, on se demande si la loi de Oy obéit a un principe de grandes
déviations a vitesse ry.
Soit A C § mesurable. On peut écrire, par définition, que

1 .
Py(Oy € A) = —— / exp(—Hy)dXy.
N OneA
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Cherchons d’abord a ré-exprimer 1’énergie en fonction de ’observable considérée, c’est-a-dire
d’avoir Hy(Xn) = Hy(On(Xn)) pour une certaine fonctionnelle 7'y, définie sur S. On peut
au moins espérer montrer une minoration du type Hy(Xy) > Hi(On(Xy)). Cela donne

1 5 o
Py(On € A) < /  exp(—H (O (X)) dX .
N JON(Xn)eA

Il faut ensuite déterminer une fonctionnelle H' définie sur S qui soit la limite de %7{?\7
Une bonne notion de limite serait ici celle de I'-convergence (au sens de DeGiorgi, voir par

exemple [Bra02,Mas93|). Demandons simplement que la fonctionnelle d’énergie limite H' vérifie

lim inf i7—[’1\;((’)]\/()2]\/)) >H'(0)si lim On(Xy) = O dans S, (1.2.4)
N—oo T'N N—o0

ce qui correspond a une ['-liminf dans le langage de la I'-convergence. On en déduit que

1 3}
liminf  inf (H?V((’)N(XN)O > inf H’
N—oo ON(XN)GA TN A

si bien que l'on peut majorer Py(On € A) par

1

— exp (—TN(inf H + 0(1))) dXy.
ZN Joy(Xn)ea A

En passant au logarithme et en divisant par la vitesse rp, il vient

1logPN((’)NeA)g—llogZN—ian'+1log/ dXN+o(1).
TN TN A TN On(Xn)eA

Intéressons-nous maintenant au terme de “volume” % log fON( a)ea dXy dans le membre de
droite, qui ne dépend plus du tout de la nature des interactions. L’intégrale dont on prend le
logarithme représente la masse de I'événement {On(Xy) € A} pour la mesure de Lebesgue (bien
slir cette masse pourrait étre infinie, et en général il faut se restreindre a priori par d’autres
arguments a un domaine borné de I’espace). On espere pouvoir montrer un principe de grandes
déviations pour la loi de 'observable Ox quand les particules Xy sont distribuées par rapport
a cette mesure de référence “sans interaction” (par opposition & Py). C’est le cas par exemple
si Oy ()? ~N) est la mesure empirique des particules comme dans le Théoréme |3| Admettons qu’il
existe une telle fonctionnelle de “volume” (ou d’entropie) Vol définie sur S, vérifiant

1 -
— log/ dXy = —inf Vol.
N On(Xn)eA A

Notre borne supérieure de PGD s’écrit maintenant

1 1
— log Pn(On € A) < ——log Zn — inf(H' + Vol) + o(1).
N N A

Pour montrer la borne inférieure correspondante, il faudrait générer une famille assez grande de

configurations Xy dans A telles que

1 5
—Hn(Xpy) < infH +o(1). (1.2.5)
N A
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Par “famille assez grande”, on entend un sous-ensemble B C A tel que le “volume” de B au sens
précédent est du méme ordre que celui de A a I’échelle logarithmique considérée, i.e. que

1 .1 .
log/ dXN:log/ dXN—I—O(l).
N ON(XN)EB N ON(XN)GA

Notons que cela fonctionne méme si B est “beaucoup” plus petit que A, par exemple si seulement
une configuration de A sur un million vérifie . On peut alors minorer Py(On € A) et
en déduire une borne inférieure de PGD. Cette démarche évoque la construction d’une recovery
sequence (ou I'-lim sup) dans le contexte de la I'-convergence, a la différence preés qu’ici on veut
construire toute une famille (de volume prescrit) de configurations dont on controle ’énergie en
termes de H'.

Le terme associé a la fonction de partition est ensuite facile & traiter, on montre qu’il vaut
asymptotiquement min(H’ 4 Vol). La fonction de taux du PGD est donc (H' + Vol) — min(H' +
Vol).

En résumé, la tache est triple :

1. Etablir un principe de grandes déviations pour la loi de Oy sous la mesure de référence
sans interactions (obtenir un terme de volume).

2. Dériver un Hamiltonien “effectif” H'y, qui s’exprime simplement en fonction de 1'obser-
vable Oy puis trouver une limite ' vérifiant (1.2.4)) (minoration de I’énergie).

3. Trouver des configurations en nombre suffisant dans A telles que %H N ()Z' N) <infs H' +
o(1) (majoration de I’énergie).

Dans cette these, la situation sera souvent la suivante :

— Le principe de grandes déviations sous la mesure de référence “sans interaction” existe
et fait apparaitre un analogue de I’entropie relative.

— La borne supérieure du PGD, c’est a dire la minoration de I’énergie & N fixé par une
énergie limite, se fait par des arguments d’analyse fonctionnelle.

— La borne inférieure du PGD, c’est a dire la construction de configurations convenables
en nombre suffisant, se fait en combinant un argument abstrait de grandes déviations
(pour disposer d’un matériau de base, c’est & dire un volume suffisant de configurations
presque convenables) et des techniques ad hoc pour modifier un peu ces configurations
afin de contréler précisément leur énergie sans trop perdre de volume.

d. Grandes déviations pour la mesure de référence

Dans ce paragraphe, on s’intéresse a la premiere des tdches mentionnées plus haut : comment
obtenir un terme de volume pour les observables qui nous intéressent, sous une mesure de
référence “uniforme” 7 Pour cela, on va utiliser la notion d’entropie relative spécifique.

Définition 1.2.2 (Entropie relative spécifique). Soit P un processus ponctuel stationnaire et
m > 0. On appelle “entropie relative spécifique de P par rapport au processus de Poisson d’in-
tensité m” et on note ent[P|II"™] la quantité

1
ent[P|II™] := ngl’éo ﬁEn‘c[ﬂMHﬁz], (1.2.6)

ot Pip désigne la loi du processus ponctuel induit dans I’hypercube Cr = [~R/2, R/2)%.

Non seulement la limite (1.2.6]) existe mais on a aussi, par sur-additivité,

1
ent[P|II"] = sup — Ent[P g [IT3].
r>0 It
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La fonctionnelle ent[-|II"™] est positive, affine, semi-continue inférieurement sur Ps(X) et on a
ent[P|II™] = 0 si et seulement si P = IT". Pour une preuve de ces faits, on renvoie a [RAS09].

L’entropie relative spécifique peut se comprendre comme 'analogue en volume infini de
I’entropie relative “classique” définie plus haut. Elle apparait comme fonction de taux pour les
grandes déviations des champs empiriques. Le résultat suivant est démontré dans |[Fo6l88}|GZ93|

Proposition 1.2.3 (Grandes déviations pour les champs empiriques). Soit {Ax}n une suite
ezhaustive croissante d’hypercubes dans R%. Pour tout z, on note 0,-C := >_pec Op—a Uapplication
de translation (ou de recentrage) d’une configuration de points par C par x. Le poussé-en-avant
de II™ par application “champ empirique”

1

Crs ——
IAN] Jay

dp,.cdz
(a comparer avec (1.2.2)) obéit a un principe de grandes déviations d vitesse |An| avec pour
bonne fonction de taux ent[-|II™].

1.2.4 Energie renormalisée

Dans cette section, on répond a la deuxieme tache mentionnée plus haut : ré-écrire la fonc-
tionnelle d’énergie en termes de la configuration de points microscopique, et lui trouver une
limite quand N — oo. On suit pour cela les travaux [SS12,SS15b] (pour linteraction logarith-
mique en dimension 2) étendus dans [SS15a] (interaction logarithmique en dimension 1), [RS15]
(pour l'interaction Coulombienne en dimension d > 3) et [PS15] (qui traite le cas Riesz général).

a. Décomposition de 1’énergie

Soit X dans (Rd)N , et vy la configuration de points associée vue a 1’échelle macroscopique
VN = Z,f\il 0z, On peut ré-écrire la fonctionnelle d’énergie ‘H comme

M (Xn) = // g — g (@)dun () + N / V(2)dvy.

D’apres les résultats a ’ordre macroscopique on sait que, avec grande probabilité, vy est proche
de Npeq (& o(N) pres), décomposons donc vy comme vy = Npieq + (VN — Nfteq). On obtient
(on rappelle que A désigne la diagonale)

Hv(Xw) = 82 [ gla = p)dpadpea + N [ Vileg
+ ] ot = v - Nauw) @)y - N )

+ 2N//9(x —y)(dvn — Ndpeq)()dpieq(y) + N/V(dVN — Ndlieq).

On peut ré-écrire la premiere ligne du membre de droite comme N?I(ueq) (avec I définie par
(1.1.5)). La troisieme ligne du membre de droite admet une ré-écriture maniable, en effet les
équations d’Euler-Lagrange associées a la minimisation de I garantissent que la fonction x —
Py () + 3V (2), avec hy,, (z) == [ g(x —y)dpeq(y), est égale & une certaine constante ¢ presque
partout (en fait, quasiment partout au sens de la théorie du potentiel) sur le support X de la
mesure d’équilibre. De plus, en posant

((2) = by () + 5V (@) — ¢
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on a ((x) > 0 presque partout sur R%. On en déduit que

2N//g(:c — y)(dvn — Ndpieq)(x)dpteq (y) + N/V(dI/N — Ndjieq) = QN/C(:):)dVN.

Cette quantité est positive et joue le réle d’'un potentiel confinant au second ordre, puisqu’elle
a pour effet de contenir les particules dans ’ensemble {{ = 0} (qui contient ¥ mais peut étre
strictement plus grand). Finalement, on peut écrire

Har () = N1(ue) + [ e =)oy = V) (@) e = N )
+ 2N/C($)dVN, (1.2.7)

et le terme N2I(ueq) ne dépend évidemment pas de la configuration. Dans (1.2.7), Hy est
toujours exprimé en fonction des quantités macroscopiques vy et peq. Pour tout X N, On pose
vy =N, dn1/dy, (la configuration de points microscopiques) et fie,(z) = N pteq (N~ (qui
est une mesure de masse N correspondant & fieq vue & ’échelle microscopique). On utilise le fait
que

—log() + g(z) dans les cas logarithmiques,
gloax) =q | \ s
a*g(x) dans les cas ou g(x) = |z|~%,

et on obtient, par un changement de variables

. Nlog N
Hov () = N2 (to) =~ [ gl =) =it o) i~ () +2N [ Gl
dans les cas logarithmiques (avec d =1 ou 2) et

Hov () = N21a) + N/ ] gt = )@y = dit) @) vy = i )(0) + 2N [ @i,

dans les autres cas.
Notons wy la fonctionnelle d’énergie définie sur X par

un(€) = [ gt~ y)(de ~ duly) ) (dC ~ dile) ),

si la configuration est finie (et o0 sinon). Posons aussi ¢(C) := [ ¢dC. La formule de décompo-
sition (splitting) de H s’écrit, en résumé

Ha(Xn) = N2 (peq) — NkiTgN +wn (V) +2NC(vy)  dans les cas logarithmiques,
NN N21(jteq) + N¥/ %oy (V) + 2N (vn) dans les autres cas.

Le terme 2NC (vn) jouera le role d’un potentiel confinant et entrera dans les considérations sur le
volume, mais il n’est pas déterminant puisque ¢ vaut zéro pour des points “typiques” i.e. dans le
support de la mesure d’équilibre. La fonctionnelle d’énergie (“au second ordre”, par opposition
au premier ordre de I'énergie qui correspond & N21(fieq)) qui nous intéresse est wy. Les travaux
de Serfaty et al. cités plus haut montrent qu’elle est typiquement (en un sens a préciser) d’ordre
N et déterminent une fonctionnelle limite pour %w N-
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b. Le champ électrique et une intégration par parties

Un deuxieme point clef de ’analyse est la ré-écriture de 1’énergie d’interaction au second
ordre wy(C) comme la norme d’un certain champ de vecteurs calculée de fagon renormalisée.
Pensons aux points Xy comme a des particules portant une charge +1 et a 'interaction g comme
a une énergie d’interaction électrostatique (I’analogie n’est physiquement valide que dans le cas
Coulombien, mais on utilisera le méme langage dans tous les cas). La mesure —;/eq peut alors
étre vue comme une densité de charge négative de masse totale —N, et le systéeme “charges
ponctuelles et arriere-plan (background) chargé négativement” forme un systéme électrique dont
wy donne 'énergie d’interaction électrostatique. On introduit alors le potentiel H'°¢

Hloc(x) — /g(l‘ — y)(dVJ,V — dﬂ;q)(y)

qui est le potentiel électrostatique généré par le systéme de charges. Son gradient donne le champ
électrique associé E'°° (que 'on appelera “champ local”) on a

B (1) = / Vol — y)(dvy — dple)(v).

Extension de ’espace. Dans le cas Coulombien en dimension d > 2, il est facile d’observer
que E'°°¢ vérifie I'équation suivante (équation de Poisson)

—div(E"°) = ¢4 (V}V — Méq) ,

pour une certaine constante ¢y dépendant de la dimension. Cela est lié au fait que le potentiel g
est alors (a une constante multiplicative pres) la solution fondamentale du Laplacien en dimen-
sion d. Pour disposer d’une équation analogue dans les autres cas, il faut ajouter une dimension
d’espace, suivant |CS07].

On va noter k € {0,1} un parameétre indiquant si I'on travaille dans I’espace R? ambiant
ou bien dans I’espace augmenté d’une dimension R%*!. On aura k£ = 0 dans les cas Coulomb
et k = 1 sinon (i.e. pour l'interaction logarithmique en dimension 1 et pour les cas Riesz avec
s > d —2). Quand k = 1 on notera souvent X un élement de R¥!, avec X = (z,y) € R? x R,
on notera également fieq0pa la mesure jeq vue dans espace augmenté (on a [ f(X)d(peqOpa) =
[ f(x,0)dpeq). Si on étend g, H'¢ et E'°¢ 3 R de la maniére naturelle, on dispose de la
relation suivante :

—div(|y|"Vyg) = ¢q,500

ou vy est tel que d—2+4k+vy = s et cq s est une constante dépendant de d, s et connue explicitement
(voir [PS15, Section 1.2]).

Troncature et intégration par parties renormalisée. Revenons un instant au cas Cou-
lombien (pour lequel les précédentes considérations d’extension ne sont pas nécessaires), et a

égalité —AH = —div(E"%) = ¢4 (Vf\, - ,ugq). Heuristiquement, ’énergie wy (v}y) s’écrit
/ 1 loc loc
wy(Vy) ~ —— H°°AH™".
Cd JRd

En intégrant par parties, il vient

1 1
wy (V) ~ Cd/Rd IVH* = q /Rd Il

1. Physiquement, il faudrait bien siir prendre [’opposé du gradient du potentiel pour obtenir le champ.
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Ainsi I’énergie électrostatique (dans le cas Coulombien) s’écrit-elle formellement comme la norme
L? du champ électrique local E'°¢ engendré par le systéme charges + background. Cependant
il est facile de voir que les champs E'°° ne sont jamais de carré intégrable autour de chaque
particule, et en effet le raisonnement précédent est incorrect car on a oublié que wy est défini
en ezxcluant la diagonale dans le domaine d’intégration, or 'auto-interaction d’une charge avec
elle-méme est infinie. Une maniére de rendre rigoureuse ’heuristique précédente est de calculer
la norme L? du champ de maniére renormalisée. Pour cela on va tronquer le champ pres des
charges & une distance 7 et soustraire & la norme L? de ce champ tronqué une quantité divergente
(quand 1 — 0) correspondant a ’auto-interaction de chaque charge.

Soit i € (0,1), on définit le potentiel tronqué par f,(X) = (9(X) — g(n))+ pour X € R+,
La quantité

5(()77) = Ldiv(\yWan) + do
Cd,s

est une mesure positive de masse 1 supportée sur 9B(0,7) (la boule étant prise dans R4 F).

Si une configuration de points v}, est donnée, on définit H};’C et E};m a l’aide de cette tron-
cature.

N N
H“(X) = H(X) = Y fy(X —2i), Ep°(X):= E°(X) = > V(X —a).  (12.8)
i=1 =1

On peut maintenant ré-écrire la fonctionnelle wy dans espace R4* de la maniére suivante

Proposition 1.2.4. Soit Xy dans (RN et E,17°C comme défini en (1.2.8). On a

wy (Vy) = lim

1
vy loc|2
tim — ([ e = Non))

Cela permet de ré-écrire la fonctionnelle d’énergie en fonction d’un objet microscopique (le
champ électrique local) qui encode, en particulier, la configuration de points puisqu’on peut
retrouver vy a partir de E'°° en calculant —div(|y|7E"°) 4 cq,spttq Opa-

c. Energie renormalisée limite

On tente maintenant de définir une fonctionnelle d’énergie similaire a wy mais qui puisse
calculer I'énergie d’interaction d’un systéeme électrique infini, avec une infinité de charges dans
R? et un background négatif dans tout 1’espace.

Soit C une configuration de points et m > 0. Soit E un champ de vecteurs dans LY . (Ré+k RIHE),
On dit que E est un champ électrique compatible avec C, m lorsque

—div(Jy|"E) = ¢4, (C — mdga) .
Pour tout n € (0,1) on définit alors sa troncature E, de maniére semblable a (|1.2.8)

Ey(x) = B(z) =Y _ Vfy(z —p),

peC

et son énergie renormalisée W(E) par

1 1
W(E) = lim Wy (E) avec W, (FE) = limsup — ( / |7 Ey|* — mg(n)) .
R RIxRF

n—0 R—oo Cd,s
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A n € (0,1) fixé, W,(E) est bien défini comme limsup. Il n’est pas évident, en revanche,
que la limite de ces quantités existe quand 7 — 0, mais un calcul (voir par exemple [PS15,
Proposition 2.4]) montre que W, (E) est presque monotone en 7 (a O(n) pres), donc W(E) est
bien défini. Cela procure une notion d’énergie (calculée la encore de fagon renormalisée) pour
les champs électriques associés a un systéme infini de charges ponctuelles + background négatif.

On peut ensuite définir ’énergie d’une configuration de points C (et d’un background de
densité m) comme l'infimum de 1’énergie renormalisée (calculée au sens précédent) des champs
compatibles avec C, m

Wm (C) = E compat}l{)llg avec C,m W(E)

Enfin, si P est un processus ponctuel aléatoire d’intensité m, on définit naturellement son

énergie renormalisée comme 'espérance sous P de W,

welee(p) := Ep[W,,].

d. Connection entre wy et Welec

Pour énoncer la connexion entre wy et Welee il est utile d’introduire Iespace des processus
ponctuels étiquetés P(X x X). Ces processus correspondent a des observables de type “champ
empirique” pour lesquelles on garde une information supplémentaire (I’étiquette) a savoir le
point autour duquel on a réalisé le zoom. On supposera toujours que la premiere marginale de
Pe P(X x X) est la mesure de Lebesgue sur ¥. On peut alors considérer la désintégration de
P par rapport & la mesure de Lebesgue sur 3, ce qui donne une famille {Pﬂ” }rex d’éléments de

P(X) tels que p
Ep[f(x,C)] = /E B [f(w.0)) i

pour toute fonction f continue bornée sur ¥ x X. On dit que P est stationnaire si les P* sont
stationnaires pour Lebesgue- presque tout z € X.
Si Xy € (RY)N on définit Py(Xy) comme

— 1
Py = \Eﬂ/zé(x’cmdx S P(E X X)

On peut maintenant énoncer le lien entre wy et Welec,

Proposition 1.2.5. On a les deux propriétés suivantes :

A) Soit {Xn}n une suite de N-uplets vérifiant sup# < +o0. Alors la suite des Py
converge, a extraction pres, vers un processus ponctuel étiqueté aléatoire P tel que

1. P est stationnaire.
2. P* est d’intensité Meq () pour Lebesgue-presque tout x € X.
3. On a .
hmlnfﬁ > /Welec( )(Pm)flg‘ (1.2.9)

N—oo N Meq\T

B) Réciproquement, si P vérifie 1. et 2. et si IW%E;Z(@ (P“”)% est fini, il existe une suite

{Xn}n telle que Py converge vers P et

: 1 e elec DT da
lim sup NU)N(XN) < /Wnlleq(x)(P )g

N—oo
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L’énoncé précédent est tres similaire a un résultat de I'-convergence. Il a été formulé initia-
lement a I’aide des champs électriques (voir [Serl5, Chapitres 5,6]), et la présentation ci-dessus
s’en déduit en passant des champs électriques aux configurations de points sous-jacentes.

La partie A) de la Proposition est une propriété de semi-continuité inférieure de 1’éner-
gie, qui est démontrée par des arguments abstraits d’analyse fonctionnelle L’affirmation B),
c’est-a-dire I'existence d’une suite recovery sequence qui montre que est parfois optimale,
nécessite elle des constructions explicites. Dans la section suivante, on presente le principal outil
technique pour réaliser ces constructions : les méthodes d’écrantage.

1.2.5 Le role de I'écrantage

Du fait de son caractere d longue portee I’énergie d’interaction est difficile & localiser. Prenons
pour exemple le cas du 2DOCP : soit Xy un N -uplet de R? et E'°° le champ local engendré dans
R2. Supposons qu’on a partitionné ¥ selon une famille finie I de domaines réguliers, connexes

€);. On a bien str
|EIOC|2 / |EIOC|2
[ e}

mais cette décomposition ne permet pas de localiser 1’énergie car la valeur de E'°° sur Q; dépend
a priori de toute la configuration. On peut relaxer le probleme et écrire

[ 1P = R,
Q;

el

ou F; est I'infimum des fQ |E77 |2 pris parmi ’ensemble des champs électriques E(®) compatibles
dans (; avec v}y et ueq, c’est-a-dire tels que

—div(ED) = ¢y (yf\f - //eq) dans ;.

Une telle relaxation permet de minorer 1’énergie d’interaction (donc de majorer les probabilités)
a l'aide d’énergies “localisées”. Pour obtenir des bornes inférieures de PGD on doit majorer les
énergies, et montrer que l'inégalité

[ 1B = S Rwhna)
x icl
peut étre renversée (& une petite erreur pres) assez souvent. Cela nécessite de construire “a la
main” des configurations et d estimer leur énergie. La question est alors la suivante : partant
de la donnée de champs {E®};c; et de configurations de points sous-jacentes {C()};c;, peut-on
construire un champ total E*! et une configuration sous-jacente C*°* dont I’énergie soit bornée
par la somme de celles des E®) ? Tl n’est pas possible, en général, de recoller deux champs
électriques si leur composante normale le long de la frontiére ne coincide pas : le champ de
vecteurs obtenu n’est plus compatible avec la configuration totale (il apparait de la divergence
le long de la frontieére). Pour résoudre ce probléme, on utilise des techniques d’écrantage qui
consistent a modifier les configurations de points et les champs électriques dans un petit voisinage
tubulaire des frontieres des domaines {2;}, de maniére a rendre la composante normale de tous
les champs électriques nulle au bord des domaines, et de pouvoir ainsi les recoller. On dit que
les champs sont “écrantés”, et leur énergie devient alors additive. Cette construction demande
un bon contréle de ’énergie de E® dans Q; et, dans le cas des interactions non-Coulombiennes,
un bon contréle de sa décroissance le long de I’axe additionnel dans R4**.

Ces techniques d’écrantage ont été introduites dans [SS12,|SS15b] pour le cas du 2DOCP et
généralisée dans [RS15] pour le cas Coulombien (d > 3), dans [SS15a] pour le cas du log-gas
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quand d =1 (ou le besoin d’ajouter une dimension d’espace apparait). Le cas général (incluant
les interactions Riesz) est traité, avec de meilleures estimées, dans [PS15].

1.3 Résultats obtenus, perspectives et problemes ouverts

1.3.1 Présentation des résultats
a. Grandes déviations pour les champs empiriques avec moyennes macroscopiques

On résume ici le contenu du chapitre |2 qui correspond a l'article [LS15], écrit avec S. Serfaty.
Par simplicité, on présentera ici les résultats dans le cas d’une interaction logarithmique en
dimension 1 ou 2. On suppose toujours que V satisfait les hypotheses du Théoréme [2] ainsi que
quelques hypotheses de régularité, notamment on demande que foq ait une densité meq assez
réguliere par rapport a la mesure de Lebesgue et que X soit C''. On introduit une fonctionnelle
d’énergie libre Fp, définie sur P,(X') par

F5'(P) == BWo(P) + ent[P[II™]  pour tout m > 0.

Soit z € ¥ et soit & > 0 tel que B(z,e) C X. Pour la simplicité de P'exposition, supposons
temporairement que meq soit constante sur B(z,¢).

Théoréme 4. La loi de C g, .y satisfait un PGD a vitesse |B(z,€)|N avec bonne fonction de

T,
taux fgbeq(x) — min ]:gleq(r).

En général meq n’est pas constante, et il faut énoncer le résultat d’une fagon différente. Pour
cela, on enrichit ’observable “champ empirique” en gardant trace du point autour duquel on
zoome. Plus précisément on introduit encore le “champ empirique étiqueté” (tagged empirical
field) comme

_ 1

Pour tout X N, PN()_(' ~) est une mesure de probabilité sur ¥ x X'. En testant contre des fonctions
qui approximent 1g (selon la premiére variable), on peut localiser cette observable et obtenir
des informations sur les champs empiriques étiquetés locaux du type

_ . 1
PNyg:XNI%/(Ssz dx.
Q] Jo W)

Le principe de grandes déviations énoncé dans |[LS15] porte sur la loi du poussé-en-avant de
Py g par Cn et est gouverné par une fonction de taux .7?,3 qui est la version “étiquetée” de Fg,
définie tranche par tranche par rapport & la désintégration d’une mesure P € P(X x X)) contre
la mesure de Lebesgue sur ..

Le Théoreme[]est valide pour des interactions de Riesz & condition d’effectuer un changement
d’échelle sur la température dans la définition de Py g. A notre connaissance, c’est la premiére
justification rigoureuse d’un principe de grandes déviations au niveau microscopique pour un
systeme continu de particules avec des interactions singulieres et a longue portée. On obtient
une forme d’universalité, puisque la fonction de taux ne dépend du potentiel V qu’a travers la
densité meq(x).

Naturellement, la connaissance du comportement typique moyenné (comme en ) est
moins précise que la loi du processus ponctuel non-moyenné (comme en ) Dans les cas
ou l'existence d’une limite en loi au processus non-moyenné est connue, il n’est pas difficile de
montrer que ces processus limites doivent minimiser la fonctionnelle d’énergie libre. On obtient
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en particulier une nouvelle propriété, variationnelle, des processus Sineg, dont on donnera une
application dans la section suivante.

Corollaire 1.3.1. La loi des processus Sineg (en dimension 1) et la loi du processus de Ginibre
(en dimension 2) minimisent (aprés mise da l’échelle) l’énergie libre Fé pour un bon choix de 5.

Une seconde conséquence du Théoréme [4] est qu’on obtient une forme explicite pour le terme
d’ordre N dans le développement asymptotique de log Zy g, en termes de .Fé et de la densité
d’équilibre.

Corollaire 1.3.2. On a, dans les cas logarithmiques pour d = 1,2
N
log Zng = —N?I5(tteq) + %logN — Nmin]-"é
- N (1 - 5) /meq(x) log meq(x) dz 4+ o(N). (1.3.1)

L’existence d’un développement asymptotique a tout ordre a été démontrée (pour le cas du
log-gas & une dimension) dans [BG13b,[BG13a], mais avec (1.3.1)) on peut interpréter le terme
d’ordre N a l'aide de ’énergie libre. On retrouve le fait, déja prédit par Dyson dans |[Dys62],
que pour une valeur particuliere de 5 (8 = d avec nos conventions, § = % pour les conventions
usuelles en matrices aléatoires) la dépendance en meq de ce terme disparait de log Zy g. Dans
les cas Riesz, on obtient aussi, pour la premiere fois, un développement de log Zx 3 au second
ordre.

b. Comportement microscopique local pour le 2DOCP

Dans le chapitre 3|, qui correspond a article [Lebl5a], on donne un résultat qui améliore
le principe de grandes déviations avec moyennes macroscopiques décrit plus haut, dans le cas
du 2DOCP. On montre qu'un principe de grandes déviations similaire est vérifié par la loi des
champs empiriques avec moyennes mésoscopiques jusqu’a 1’échelle la plus fine N —1/246 pour
6 > 0. Dans I’énoncé suivant on utilise la notation .

Théoréme 5. Soit x € X et § € (0,1/2) fiwés. La loi de CY 5

(2, N—1/2+6) obéit a un PGD a
(z)

meq(x)'

vitesse N0 avec bonne fonction de tauz fgzeq — min fy

Diminuer ainsi la taille sur laquelle on moyenne en espace représente d’une part un pas vers
I’étude hypothétique de I'observable “non-moyennée” (qui est réellement “la plus fine” possible),
et permet d’un autre c6té d’obtenir des lois locales, au sens suivant.

Corollaire 1.3.3. Soit z € S et § € (0,1/2) fizés. Soit f(-) = fF(NV2O( = 20)) pour une
fonction f supposée C' a support compact dans R%. On a

=o(N%).

L’estimée de [Leb15a| est en fait quantitative et le membre de droite dépend explicitement de
f et de son gradient. Ce type de lois locales a été tres étudié dans le cadre des matrices aléatoires
(voir par exemple [BY Y14a,BYY14b]). Pour le 2DOCP, une loi locale (sans le principe de grandes
déviations associé) de méme nature a été démontrée simultanément (et indépendamment) par
Bauerschmidt, Bourgade, Nikula et Yau dans [BBNY15].

L’idée de base de la preuve du Théoreme [5| est de réaliser un bootstrap le long des échelles
considérées. Un argument semblable avait été utilisé dans [RNS15| pour ’étude des minimiseurs,

- f(dvy, — Ndjpieq)
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et il est intéressant de noter que la preuve de la loi locale pour les matrices aléatoires repose aussi
sur un bootstrap (voir [BGK16| pour une introduction & ces méthodes). On introduit une notion
de “bon contrdle a 1’échelle §”, qui exprime que 1’énergie du systéme et le nombre de particules
sont proportionnelles au volume quand on considére des domaines d’échelle § (c’est a dire de
longueur caractéristique N° aprés mise a Péchelle d’un facteur N'/2), avec bonne probabilité.
On montre qu’il existe t < 1 tel que

PGD a D’échelle 61

< :
Bon contréle a ’échelle §; pour tout 19 < o <9

Bon contrdle a ’échelle 6 — {

L’initialisation repose sur des considérations énergétiques simples, mais 'argument de descente
en lui-méme nécessite une légere adaptation des techniques d’écrantages présentées plus haut.
On doit se limiter a traiter le cas de l'interaction logarithmique pour des raisons techniques :
d’une part la gestion de la troncature est plus facile quand la singularité en 0 est modérée et
d’autre part I’ajout d’une dimension d’espace dans les cas non-Coulombiens rend les arguments
d’écrantages plus délicats.

c. Application aux limites de haute et basse température

On présente ici les chapitres [4] et |5| qui correspondent aux articles [Leb15b}Leb15¢c].

Un inconvénient de ’énergie libre F3 est qu’elle est difficile a calculer explicitement. En
particulier, il est difficile d’évaluer le terme d’énergie en dehors des cas ou la configuration
de points est périodique (cas pour lequel il existe des formules exactes qui permettent une
évaluation, fit-elle numérique). Dans [Lebl5b], on introduit une définition alternative, plus
intuitive, de I’énergie d’'un processus ponctuel, sans passer par les champs électriques. Cette
énergie Wit correspond réellement & la “limite en volume infini” de I'interaction électrostatique
d’'une configuration de points et d’'un arriere-plan uniformément négativement chargé, dans
esprit de |[BS13]. Si P est la loi d'un processus ponctuel stationnaire d’intensité 1, Wint(P)
s’exprime uniquement en fonction de py p, la fonction de corrélation a deux points, par la formule
suivante

. 1 d
W (P) i=lipinf ;[ 9(0)(po,p(v) = 1) [[(R — [uil)do,
[-R,R]4\{0}

R—o0 i1

ott v = (v1,...,vg) € R? et olt on écrit, avec un léger abus de notation ps p(v) = pa p(0,)
(comme P est stationnaire, ps p(z,y) ne dépend que de  — y). Dans les cas logarithmiques, on
doit définir aussi

D'°8(P) := C'lim sup <1d // (p2,p(z,y) — 1)dzdy + 1) log R,
REJ)i=r2.m/20

R—o

avec C' une certaine constante dont la valeur n’est pas importante. Cette quantité supplémentaire
est une complication technique mais nécessaire, sur laquelle il n’est pas important de s’attarder
dans un premier temps.

Une fonctionnelle d’énergie similaire a été introduite (dans les cas logarithmiques) par Boro-
din et Serfaty dans [BS13|, mais sans donner de connection rigoureuse avec ’énergie renormalisée
Welee Iei, on prouve

Théoréme 6. Les énergies W‘flec et Wit sont reliées comme suit.
— Dans le cas logarithmique 1D, W est la réqularisée semi-continue inférieurement de
Wint 4 fDlog‘
— Dans le cas logarithmique 2D (2DOCP), on a W < Wint 4 plog,
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— Dans les autre cas non-Coulombiens, W' est la régularisée semi-continue inférieurement
de Wint
— Dans les cas Coulomb pour d > 3, on a Wﬁlec < Yyint,

On utilise ensuite I’expression “explicite” de W™ en termes de la fonction de corrélation &
deux points, et son lien avec We'*® tel qu’exprimé ci-dessus, pour effectuer des estimées d’énergies
simples (mais impossibles & mener directement avec W), Cela permet de prouver les deux
résultats suivants concernant la minimisation de 3 dans la limite 8 — 0 et 3 — 0.

Théoréme 7. Les minimiseurs de ]:51 convergent, quand B8 — 0, vers la loi d’un processus
ponctuel de Poisson d’intensité 1. De plus, cette convergence a lieu “en entropie”, i.e.

lim sup ent[P3|IT'] = 0.
B0 Fy(Pg)=min Fs ’

Dans le cas particulier du log-gas 1D, comme expliqué plus haut (Corollaire [1.3.1)), un mi-
nimiseur de ]:é est la loi du processus Sineg de Valko et Virag [VV09]. Notre méthode donne
donc une nouvelle preuve, plus “physique”, d’un résultat récent de Allez et Dumaz [AD14] :

Corollaire 1.3.4. Quand 3 — 0, le processus Sineg converge en loi vers un processus ponctuel
de Poisson d’intensité 1 sur R.

Si 'on se restreint maintenant & la dimension 1, on peut également caractériser la limite
f — oo (limite de basse température) des minimiseurs de F3. Définissons Pz comme la loi du
. . . . . 1
processus ponctuel stationnaire associé au réseau Z i.e. Py := fo Opy7 dx.

Théoréme 8 (Cristallisation pour d = 1). Pour d = 1 (et g logarithmique ou Riesz), Py est
l'unique minimiseur de W parmi les processus ponctuels aléatoires stationnaires d’intensité
1. De plus, si {Pg}g est une famille de minimiseurs de Fg, on a

lim Ps = P;y.
Jim Ps = Pu

Le Théoreme [§|est un résultat de cristallisation, puisqu’il établit la convergence vers I'unique
cristal uni-dimensionnel quand  — co. L’article antérieur [Lebl5c] est dévolu a la preuve d’un
résultat similaire, restreint au cas ou g est logarithmique. La preuve de [Leb15c| s’appuie sur les
expressions explicites valables dans le cas de configurations périodiques et procede ensuite par
Papproximation d’un processus stationnaire par des (combinaisons de) processus périodiques.
La méthode de [Leb15b| est analogue dans Iesprit, mais suit une approche plus simple et qui
s’adapte au cas Riesz.

d. Grandes déviations pour le 2D2CP

L’article |[LSZW15|, écrit avec S. Serfaty, O. Zeitouni et W. Wu, constitue le chapitre |§| et
traite du contexte légérement différent d’un gaz de Coulomb bi-dimensionnel avec des particules
de charge +1.

Du fait de la présente de charges ponctuelles de signes opposés, le systéme est instable a basse
température car ’excitation thermique ne compense pas l'attrait des configurations d’énergie
trés négative (avec des dipdles de charges opposées tres proches I'une de l'autre). Le domaine
de stabilité (en température) a été déterminé dans [DL74] et I’existence d’une limite thermody-
namique pour la fonction de partition a été établie dans [Fr676] par des méthodes de théorie
des champs et par Gunson et Panta dans |[GP77] par des méthodes “classiques”. On s’appuie
beaucoup sur les estimées de [GP77] pour controler les moments exponentiels de quantités a
priori non bornées comme les interactions entre particules proches de charges opposées.
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A part Dexistence d’'une limite thermodynamique, le comportement macroscopique du sys-
teme n’était pas étudié, ni les lois microscopiques. Par exemple il n’était pas connu rigoureuse-
ment que les charges positives et négatives se répartiraient (a 1’échelle macroscopique O(1)) de
maniere a remplir le domaine (ici, le carré unité) de maniere uniforme (voir cependant [BG99)
pour une question similaire avec un scaling différent sur la température). La question de déter-
miner leur comportement & Déchelle N~/2 n’avait pas non plus été abordée.

Dans |[LSZW15], on établit un PGD a la vitesse N pour le comportement microscopique,
apreés une moyenne a 1’échelle macroscopique. La fonction de taux est analogue a ’énergie libre
F3 étudiée plus haut, mais le terme d’énergie demande une attention supplémentaire car il n’est
pas minoré (il existe méme des configurations d’énergie —oo). En utilisant les calculs de |[GP77]
on arrive a montrer que pour des températures suffisamment hautes (en fait, dans tout le domaine
de stabilité du systeme), 'excitation thermique est suffisante pour rendre négligeables le volume
(sous la mesure de Gibbs) dans I’espace des phases de ces configurations d’énergie trés négatives.
Une fois que l'on connait le PGD qui gouverne le comportement microscopique, on étudie la
dépendance de la fonction de taux en la densité macroscopique de charges, et on résout un
probléme variationnel simple qui montre que le comportement optimal pour les particules est
de se répartir uniformément a ’échelle O(1). On déduit donc le comportement macroscopique
asymptotique a partir de la détermination d’une contrainte sur le comportement microscopique,
et a notre connaissance c’est pour 'instant la seule facon de procéder.

1.3.2 Perspectives de recherche

Présentons maintenant quelques questions reliées aux objets étudiés dans cette these.

a. Zéros de polyn6mes aléatoires

L’étude des zéros de polynomes aléatoires ou de fonctions entieres aléatoires possede certaines
similarités avec cette des valeurs propres de matrices aléatoires (voir par exemple [HKPV09],
ou encore comparer [TV11] et [TV14]). Une raison qui peut expliquer cette similitude est que
le changement de variables coefficients-racines fait apparaitre un déterminant de Vandermonde
en les racines, d’ol une structure algébrique particuliere de la loi de probabilité et - du point de
vue de la physique statistique - une interaction logarithmique entre racines considérées comme
des particules.

De la méme maniere qu’il existe de nombreux modeles de matrices aléatoires, on peut consi-
dérer plusieurs familles de polyndémes aléatoires. Un cas particulier est celui ot Py est un “po-
lyndéme de Kac” et s’écrit

N
Py(X) =) apXx*
k=0

avec pour coefficients {ay}r=1,  n des variables aléatoires Gaussiennes complexes i.i.d centrées
de variance 1/2. Dans ce cas (et, en fait, le résultat vaut pour des familles plus générales) la
mesure empirique des zéros
1
UN = N ; 0z,

converge presque slirement vers la mesure uniforme sur le cercle unité quand N — oo (voir par
exemple [Kos93|).

Dans [Z2710] (voir aussi [But15] pour une ré-écriture plus élementaire de la preuve), Zeitouni
et Zelditch établissent un principe de grandes déviations pour la loi de pn, qui fournit ’équivalent
du théoreme [2| dans ce cadre. En particulier, ce résultat fait apparaitre la similarité de la loi
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jointe des racines de Py avec un modele de physique statistique. Introduisons la fonctionnelle
d’énergie
N

%JI%aC(Zl, CeyZN) = Z —log |z — zj| + (N + 1) log/ (H |z — 3112) dvgi(z),
1<i#j<N st \i=1
avec Vg1 la mesure uniforme sur le cercle unité, et la mesure de Gibbs associée (a température

inverse § = 1) .

dPRae(Zy) = In exp (—H%ac(zl, e ZN)> dZy,
ot Zy = (21,...,25) € CN et dZy est la mesure de Lebesgue sur C (avec toujours Zy une

constante de normalisation). Alors la loi jointe des zéros de la famille de polynomes aléatoires
définie plus haut coincide avec }P%ac. On peut donc voir les zéros de Py comme des particules
dans C interagissant via un potentiel logarithmique, et soumises a un confinement non linéaire

N

V(Zy) := (N + 1) log /S1 (H |z — Zz‘\2> dvgi (2).

i=1

Dans un projet avec Raphaél Butez, nous aimerions donner un principe de grandes déviations au
second ordre, concernant le comportement microscopique du systeme. Le caractére particulier
du “potentiel” V' est intéressant : outre sa nature non-linéaire, il est “faiblement” confinant et
pourtant piege les particules dans un compact du plan. De plus, le probléme est bi-dimensionnel
mais la mesure limite, elle, est concentrée sur une sous-variété de dimension 1, ’observable
microscopique doit donc tenir compte a la fois de la disposition 1d des particules (mesurée par
leur angle) et de leur distance au cercle unité.

b. Unicité des minimiseurs et caractérisation des processus Sineg

Dans [LS15] il est prouvé que les processus ponctuels Sineg définis par Valko et Virag dans
[VV09] forment une famille de minimiseurs pour la fonctionnelle d’énergie libre F, [.13 dans le cas
du log-gas a une dimension. Si I’on prouvait que les minimiseurs de F3 sont uniques en dimension
1, cela donnerait une caractérisation variationnelle de ces processus. Comme Fjp est affine, on ne
peut pas utiliser un argument direct de (stricte) convexité pour obtenir 'unicité des minimiseurs.
Cependant, suivant une suggestion d’Alice Guionnet, il serait possible de montrer que Fg est
convexe par déplacement, une notion introduite par Mc Cann |[McC97| dans le contexte du
transport optimal. On dit qu'une fonctionnelle F : P(X) — R est convexe par déplacement
si F est convexe le long des géodésiques {pu}icjo1] avec pe := ((1 — )Id + tT)#u (# désigne
Popération de pousser-en-avant), quand pu € P(X) et T est I'application de transport optimal
de p a une autre mesure v.

Il est tres plausible que la fonctionnelle d’énergie libre associée a notre définition alternative
Wint de I'énergie (voir le chapitre {)) soit effectivement convexe par déplacement (pour une
bonne notion de transport optimal sur les processus ponctuels aléatoires) et a donc un unique
minimiseur. Il resterait a montrer que cette propriété s’étend a la “vraie” fonction de taux Fg.

Plus généralement, la question de I'unicité des minimiseurs est d’importance physique puis-
qu’une réponse négative (plusieurs minimiseurs) correspond physiquement a une transition de
phase : différents comportements limites possibles coexistent & une température donnée.

c. Théoréme central limite dans les cas logarithmiques

Un champ d’étude récemment actif consiste a établir un Théoréme Central Limite (T'CL)
pour les fluctuations de statistiques linéaires i.e. pour la loi de YV, f(z;) — N [ fdpeq (pour
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une fonction test f assez réguliére) given test function f, dans le contexte des log-gases 1D et
2D, ou pour des modeles de matrices aléatoires. On peut citer par exemple [Joh98,For99.[Shc13,
Shcl4,|AHM15,BG13b,BG13al, qui ne couvrent pas toutes les valeurs de 8 (en dimension 2) et
imposent généralement des conditions fortes de régularité sur le potentiel V.

La transformée de Laplace de la loi de ces fluctuations sous la mesure de Gibbs Py g coincide
avec la mesure de Gibbs d’un log-gas ou le potentiel a été perturbé. Dans un travail en cours avec
Sylvia Serfaty, on cherche a établir un TCL pour les log-gases en dimension 1 et 2 en utilisant
notamment les méthodes présentées plus haut, qui permettraient entre autres d’assouplir les
conditions sur V' (par exemple sans supposer V analytique) et de s’appliquer indifférement &
toutes les valeurs de 5 > 0.

d. PGD local pour le log-gas a une dimension

Le comportement microscopique local (i.e. avec des moyennes réalisées a échelle mésoscopique
arbitrairement petite comme dans ) pour les log-gases 1D a été établi dans [BEY14, BEY12],
ou les auteurs prouvent l'universalité (en fonction du potentiel) et établissent des lois locales
(dans le méme sens que ) précises jusqu’a I’échelle la plus fine N~1*¢. Un objectif serait de
retrouver ces résultats par des arguments vartationnels plus “physiques” similaires a ceux mis
en ceuvre dans [Lebl5a] et d’obtenir de plus un principe de grandes déviations a toute échelle
mésoscopique. Un avantage serait que nos méthodes ne nécessitent pas d’hypotheses fortes de
régularité sur V et sont, pour l'essentiel, insensibles au nombre de cuts (i.e. au nombre de
composantes connexes du support X de fieq)-

La principale difficulté rencontrée est d’obtenir un bon controle de la décroissance du champ
électrique (ou de la transformée de Stieltjes, ce qui est essentiellement le méme objet) le long de
I’axe “supplémentaire” (quand on étend R en R'*1), afin de permettre aux techniques d’écrantage
de fonctionner. Pour I'instant, les résultats obtenus ne permettent que de descendre a certaines
échelles mésoscopiques N ¢, mais pas aux échelles les plus fines N~11¢.

e. Gaz de Riesz hypersinguliers

Une question naturelle est de chercher a généraliser le principe de grandes déviations de
[LS15] & des potentiels d’interaction plus généraux. Dans un travail en cours avec Doug Hardin,
Edward Saff et Sylvia Serfaty, on traite le cas ou g est un potentiel de Riesz hypersingulier du
type g(x —y) = |x —y|~* avec s > d. Ce potentiel est plus répulsif (puisque la singularité en 0 est
de plus en plus forte quand s est grand) et décroit plus vite & I'infini (il n’est plus & longue portée,
ce qui simplifie la localisation de 1’énergie). Le comportement macroscopique est différent (il n’y
a pas, en général, de mesure d’équilibre & support compact), mais & I’échelle microscopique on
peut établir un résultat analogue a celui de [LS15] concernant les grandes déviations des champs
empiriques.

1.3.3 Pour réver
Pour conclure, on mentionne deux questions qui paraissent particulierement intéressantes,
mais aussi particulierement difficiles a résoudre.

a. Processus ponctuels limites en dimension 2.

On se place ici dans le cas du 2DOCP. En dimension 2, on connait ’existence d’un proces-
sus ponctuel (non-moyenné) limite, dans le cas de ’ensemble de Ginibre et plus généralement
du “Random Normal Matrix model” tel qu’étudié dans [AHM11,/AHM15|. Ces résultats corres-
pondent a une valeur précise de 3, et la question de 'existence de la limite en loi des processus
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ponctuels limites non-moyennés (tels que définis dans ) est ouverte pour toutes les autres
valeurs de 3. Cette question est indirectement liée a I'unicité des minimiseurs de Fg en dimen-
sion 2, puisque 'unicité impliquerait (via le principe de grandes déviations) que les processus
moyennés admettent une limite, qui serait un candidat évident pour étre la limite des processus
non-moyennés.

b. Le probléeme de cristallisation

Ce probléme est bien connu : il consiste & démontrer rigoureusement que les configurations
qui minimisent ’énergie (en dimension 2) forment (ou convergent vers, si I'on étudie la limite
N — o0) un réseau triangulaire (appelé aussi réseau d’Abrikosov). On renvoie a l'article de
synthese [BL15] pour une présentation de ces questions et de la littérature concernée.

Dans [SS12], il est démontré, en utilisant des résultats poussés de théorie des nombres, que
le réseau triangulaire est I'unique minimiseur de W parmi les réseaux de densité fixée, mais la
question de minimiser W sur les configurations de points (de densité moyenne fixée, par exemple)
reste ouverte. Il est d’ailleurs clair que le minimiseur ne saurait étre unique, puisqu’une petite
perturbation d’une configuration de points laisse W inchangé. Il est peut-étre plus pratique de
poser la question au niveau des processus et de chercher & minimiser W parmi les processus
ponctuels aléatoires stationnaires d’intensité fixée. On peut commencer par tenter de répondre
A la méme question pour la fonctionnelle alternative W' (telle que définie dans [Leb15b]) qui
a le mérite de posséder une expression explicite en termes de la fonction de corrélation a deux
points.

Enfin, une forme (tres faible) de la conjecture de cristallisation serait la suivante :

Conjecture 2. Les minimiseurs de W sont d’entropie relative spécifique infinie.

Bien entendu, le processus ponctuel aléatoire associé a un réseau est d’entropie infinie. Mon-
trer que ent[P|IT'] = +oo pour tout minimiseur de W¢® serait une indication de la nature
“ordonnée” desdits minimiseurs.
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Chapitre 2

Grandes déviations pour les champs em-
piriques

Ce chapitre est constitué de l'article “Large Deviation Principle for Empirical Fields of Log
and Riesz gases” [LS15] écrit avec S. Serfaty.

Dans ce chapitre, on fait une confusion terminologique entre un processus ponctuel et sa loi.
Ici, un élément de P(X) est appelé point process alors qu’il s’agit techniquement de la loi d'un
processus ponctuel (un random point process, ou law of a point process). La terminologie et les
notations sont cohérentes dans tout le chapitre, mais different de celles des chapitres suivants.
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2.1 Introduction

2.1.1 General setting and main results

We consider the Hamiltonian of a system of N points in the Euclidean space R? (d > 1)
interacting via logarithmic, Coulomb or Riesz pairwise interactions, in a potential V:

N
Hy(z1,...,2N) = Z g(l'i—xj)+NZV(l'i), Z; ERd,
1<i£j<N i=1

where the interaction kernel is given by either

g(x) = —log|z|, in dimension d =1, (2.1.1)
or
g(z) = —log|z|, in dimension d = 2, (2.1.2)
or in general dimension
1
g(x) = o max(0,d —2) <s <d. (2.1.3)
x

Whenever the parameter s appears, it will be with the convention that s is taken to mean 0
if we are in the cases (2.1.1) or (2.1.2)). The potential V' is a confining potential, growing fast
enough at infinity, on which we shall make assumptions later.

We are interested in proving a Large Deviation Principle (LDP) for the Gibbs measure
associated to this Hamiltonian

1 _s
dPng(x1,...,oN) = ZNBe_gN IHN (@ tN) gy day, (2.1.4)

where 8 > 0 is a constant that represents an inverse temperature, and the temperature scaling
BN~#/4 (understood with the convention s = 0 in cases 7) is chosen to obtain
non-trivial results.

In the case , this Gibbs measure corresponds to a “1D log-gas" system, also called a
“B-ensemble". As is well known, particular instances of these occur in random matrix theory, for
example when = 1,2,4 with a quadratic potential V' (with the GOE, GUE, GSE ensembles)
and they have been intensively studied. In the case it corresponds to a two-dimensional
log-gas or Coulomb gas or “one-component plasma', a particular instance being the Ginibre
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ensemble of random matrices obtained with the choice § = 2 and V' quadratic. For a general
presentation of these we refer to the textbooks [Meh04, Forl0, AGZ10] and the foundational
papers [Wighb, Dys62] where the connection between the law of the eigenvalues of random
matrices and Coulomb gases was first noticed. A related version, with particles of opposite
signs, also called classical Coulomb gas is also a fundamental model of statistical mechanics, cf.
the review [Spe97] and references therein.

The case d > 3 and s = d — 2 corresponds to a higher dimensional Coulomb gas, which
can be seen as a toy (classical) model for matter. The study of these was pioneered e.g. in
[PS72, JLM93||LL69,|LN75].

Finally, the case can be seen as a generalization of the Coulomb case with more general
Riesz interactions. By extension, we may call such a system a Riesz gas. Motivations for studying
Riesz gases are numerous in the physics literature, see for instance [Maz11,[BBDRO5]: they can
also correspond to physically meaningful particle systems, such as systems with Coulomb inter-
action constrained to a lower-dimensional subspace. Another important motivation for studying
such systems is the topic of approximation theory. We refer to the forthcoming monograph of
Borodachev-Hardin-Saff [BHS]|, the review papers [SK97,BHS12] and references therein. In that
context such systems are mostly studied on the d-dimensional sphere or torus.

In all cases of interactions, the ensembles governed by the law are considered as
difficult systems in statistical mechanics because the interactions they contain are truly long-
range, and the points are not constrained to a lattice. As always in statistical mechanics, one
would like to understand if there are phase-transitions for particular values of the (inverse)
temperature 3. For such systems, one may expect what physicists call a liquid for small 8, and
a crystal for large 3, cf. for instance [HM13]. In the case of the two-dimensional Coulomb gas
(or one-component plasma) there are in fact important controversies in the physic communities
(see for instance [Sti98]) as to whether there is a finite 3 for which the system cristallizes, and
what its value is. This crystallization phenomenon has only been justified numerically, the first
instance seems to be [BST66]|. The exact definition of crystallization matters a lot of course, the
one taken by physicists is that of non-decay of the two-point correlation function, a rather weak
criterion. One consequence of the results we prove here will be that there is no finite temperature
of cristallization with the strict definition of the configuration being a crystal. In other words
crystallization in that sense can happen only in the limit 8 — co. In one dimension, the result
is complete thanks to the result of [Leb15c,[Leb15b|: we will see that the crystallization happens
if and only if £ is infinite.

Such systems naturally exhibit two lengthscales: a mesoscopic (or macroscopic) scale corre-
sponding to the scale of confinement of the potential V' — here 1 — at which one can study the
average (or mean-field) distributions of the points, and a microscopic scale corresponding to the
interparticle distance — here N~1/¢ — at which one can study the “local laws" for the distributions
of points. Of course, crystallization is a phenomenon that happens at the microscopic or local
scale.

Our approach in this paper is in line with the approaches of [SS15a] for the case ,
[SS15D] for the case (2.1.2)), [RS15] for the Coulomb cases, and [PS15] for the general Riesz case.
As in those previous papers, it allows to treat the case of arbitrary 8 and quite general V. As
in [PS15], it also allows to treat all cases (2.1.1)—(2.1.2)—(2.1.3) in one unified approach.

Prior to these works, the case is certainly the one that has been most intensively
studied and for general values of 5 and general V’s. This culminated with very detailed results
in the most recent papers which obtain on the one hand very precise asymptotic expansions of
the partition function [BG13b,BG13a,/Shcl3,Shel4, BFG13] and on the other hand complete
characterizations of the point processes at the microscopic level, including spacing between the
points [VV09,BEY14,BEY12]. The case has been studied for general V' in the particular
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case § = 2, which allows to use determinantal representations, and characterize the limiting
processes at the microscopic level [Gin65,BS09]. Central Limit Theorems for fluctuations were
also obtained [Joh98,RV07, AHM11, AHM15|. The case without temperature (formally
B = o00) is also well understood with rigidity results on the number of points in microscopic
boxes [AOC12, RNS15]. There was however little on the case of general 5 (away from the
determinantal case) for or for any 3 with the Riesz interaction kernel.

It is well-known since [Chob8| (see [ST97] for the logarithmic case, or [Serld, Chap. 2] for a
simple proof in the general case) that to leading order, under suitable assumptions on V', and if

s < d in (2.1.3), we have
min Hy = N?Z(uy) + o(N?) (2.1.5)

in the limit N — oo, where

1) = [[ sl du@)dun) + | V@ au (2.1.6)

is the mean-field energy functional defined for Radon measures u, and the so-called equilibrium
measure jiy is the minimizer of Z in the space of probability measures on R, denoted P(R%).
This is true only for s < d, which is the condition for to make sense and to have a
minimizer. We will always assume that uy is a measure with a Hoélder continuous density on its
support, we abuse notation by denoting its density py(x) and we also assume that its support
Y is a compact set with a nice boundary. We allow for several connected components of ¥ (also
called the multi-cut regime in the logarithmic case of dimension 1). The detailed assumptions
are listed in Section 2.2.7]
An LDP for the law of the “empirical measure” % N | 65, under the Gibbs measure

b
ZNg

(i.e. but with a different temperature scaling) also holds: there exists an LDP at speed
N? with rate function 3/2(Z —Z(pyv)). This was shown in [HPOOBAG97] (for the case (2.1.1)),
[BAZ98| (for the case for g = 2), [CGZ14] for a more general setting including the Riesz
one, see also [Serl5, Chap. 2] for a simple presentation.

This settles in some sense the understanding of the leading order macroscopic behavior of
these systems: at finite temperature, all empirical measures % Zi]il 0z, ressemble the equilibrium
measure uy, except with exponentially small probability.

On the other hand, the behavior of the Hamiltonian H and of its minimizers has been un-
derstood at the next order and at the microscopic scale where the points become well-separated,
i.e. N~Y4  First, it was remarked in [SS15b] (for the case (2:1.2)), [SS15a] (for the case
(2.1.1))), [RS15] (for all the Coulomb cases), and [PS15] (for the general situation) that Hy can
be exactly split into the sum of a constant leading order term and a typically next order term,
as

8
e THN@LtN) g day

N
HN(xlv cee IN) = NZI(MV) + 2NZ C(‘TZ) + N1+S/dwN($la s axN) (217)

i=1
in the case (2.1.3]) and respectively

N

N
Hy(z1,. .., 2n) = N*T(py) — i log N + QNZC(:@) + Nwn(z1,...,2N) (2.1.8)
i=1

in the cases (2.1.1)—(2.1.2), where wy will be defined in (2.2.22)), and ( is a function depending

only on V, which is nonnegative and vanishes exactly in a set that we denote w and which
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contains ¥ (precise definitions will be given in in Section [2.2.1)). It was shown in [SS15D),
SS15a, RS15, PS15] that the object wy has a limit W as N — oo called the “renormalized
energy", which is expressed in terms of the potential generated by the limits of configurations
blown-up at the scale N4, Its precise definition is given in Section As a consequence,
minimizers of Hy converge, after blow-up, to minimizers of W. It is expected (but this remains
at the level of a conjecture except in dimension 1), that at least in low dimensions, the minimum
of W is achieved at simple (Bravais) lattice configurations, i.e. minimizers of W are expected
to be crystalline and ressemble perfect lattices. This settled in [SS15b}|SS15a,|RS15,PS15] the
analysis of the microscopic behavior of minimizers in the formal case § = co by connecting H n
to W and minimizers of Hy to the cristallization question of minimizing V. The information
obtained this way on Hy also allowed to deduce information on the case with temperature
i.e. on Pyg: an asymptotic expansion of the logarithm of the partition function Zy g and a
qualitative description of the limit of Py g, which become sharp only as 3 — oo, and hints
at a crystallization phenomenon. In dimension 1, the crystallization was rigorously established
in [SS15a], using the result of [Lebl5c].

Our goal here is to obtain a complete LDP that lies at this next order and is valid for all
B. It describes the configurations after blow-up at the microscopic scale around points in the
support X of the equilibrium measure py and gives a rate function on the random point processes
obtained via the blown-up limits. Equivalently it is an LDP “at the process level" also called
“type-IIT LDP", cf. for example |[RAS09|. For general reference on large deviations one may
see e.g. [DZ10]. The idea of using large deviations methods for such systems already appeared
in [BBDRO5| where results of the same flavor but at a more formal level are presented.

a. Preliminary notation.

Before giving a statement, let us introduce some notation. We denote by X the set of
locally finite (not necessarily simple) point configurations in R%, or equivalently the set of purely
atomic Radon measures giving an integer mass to singletons, cf. [DVJ88]. The topology of vague
convergence induces a topology on X. A point process is then defined to be a probability measure
on X, i.e. an element of P(X), cf. [DVJ8S]. We can then see configurations (z1,...,zn) as
elements of the space X of discrete (finite or infinite) point configurations in R?. When starting
from an N-uple of points (z1, . .., zy), we first rescale the associated finite configuration 0¥ | Oz,
by a factor N'/¢ and then define the map

in:(RHYN = P(Ex X)

(1,...,2N) (2.1.9)

N Ot a2, 6N1/dzi>)d”3
where 0y denotes the action of translation by A and ¢ is the Dirac mass.

The space P(X x X) is defined as the space of “tagged point processes", where we keep as a tag
the point & € ¥ around which the configuration was blown up. It is equipped with the topology
of weak convergence of measures on ¥ x X’ (the topology is discussed further in Section . If
P is a tagged point process we will always assume that the first marginal of P is the normalized
Lebesgue measure on ». We will generally denote with bars the quantities that correspond
to tagged processes, and without bars the quantities that correspond to non-tagged processes.
We denote by Ps(X) the set of translation-invariant, or stationary point processes. We also call
stationary a tagged point process P such that the disintegration measure P* (cf. [AGS08, Section
5.3] for a definition) is stationary for (Lebesgue-)a.e. x € ¥ and denote by Ps(X x X') the set of
stationary tagged point processes.

In [PS15] and previous articles, a renormalized energy W was defined at the level of the
potentials generated by a point configuration. In the particular case , it can be interpreted
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as the L? norm of the Stieltjes transform, properly normalized (cf. [SS15a]). This energy may
be “projected down" to a renormalized energy W defined on point configurations themselves (all
definitions will be recast more completely below in Section . One can then extend it as an
energy on point processes P € P(X) by

W (P) = / W, (C) dP(C) (2.1.10)

where we keep as index m the intensity of the point process, or equivalently the background
density. We then define the renormalized energy of a tagged point process as

1

Cd,s

W.“V (]5) =

/Ewuv(x)(Px)dx (2.1.11)

where cg ¢ is a constant depending only on d, s.

Next, we define a specific relative entropy as the infinite-volume limit of the usual relative
entropy with respect to some reference measure. Below C denotes the hypercube of sidelength
N, [-N/2,N/2)% and |U| denote the Lebesgue measure (or volume) of a set U.

Definition 2.1.1. Let P be a stationary point process on R%. The relative specific entropy
ent[P|IT!] of P with respect to II', the Poisson point process of uniform intensity 1, is given by

. 1
ent[P|IT") := lim ot (Poy Ty (2.1.12)

where Pc,, denotes the process induced on (the point configurations in) Cn, and Ent(-|-) denotes
the usual relative entropy (or Kullbak-Leibler divergence) of two probability measures defined on
the same probability space.

We take the appropriate sign convention for the entropy so that ent > 0 i.e. if u,v are two
probability measures defined on the same space we let

dp
Ent (p|v) = /log ad,u

if p is absolutely continuous with respect to v and +o00 otherwise. It is known (see e.g. [RAS09])
that the limit exists for all stationary processes, hence the relative specific entropy is
well-defined, and also that the functional P + ent[P|IT'] is affine lower semi-continous and that
its sub-level sets are compact.

We end this section by recalling the definition of LDP.

Definition 2.1.2. A sequence {un}n of probability measures on a metric space X is said to
satisfy a Large Deviation Principle (LDP) at speed rn with rate function I : X — [0, +o0] if the
following holds for any A C X

1 1
—inf 7 <liminf — log un(A) < limsup — log un(A) < —inf I,
A N—oo TN N—oo TN A

where A (resp. A) denotes the interior (resp. the closure) of A. The functional I is said to be
a “good rate function” if it is lower semi-continuous and has compact sub-level sets.

We refer to [DZ10] for a detailed treatment of the theory of large deviations and to [RAS09]
for an introduction to the applications of LDP’s in the statistical physics setting.
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b. Main result and consequences.

We may now state our main LDP result.

Theorem 9 (Large Deviation Principle). Assume V' satisfies the assumptions of Section|2.2.1.
Let*Bn g be the random tagged empirical field associated to the Gibbs measure by pushing forward

Png by the map (2.1.9). Then for any B > 0, the sequence {gN,,B}N satisfies a large deviation
principle at speed N with good rate function B(?B - inf7g) where

Fs(P) = %WW(P) 4 ; </Z ent[P|ITY] dz + 1 — |z|) | (2.1.13)

A first consequence of the LDP is that in the limit N — oo, the Gibbs measure (more
precisely the limit of By 5) concentrates on minimizers of F3. Also, it is easy to see that P
minimizes Fg if and only if its disintegration measures P* minimize for a.e. € ¥ the non
averaged rate function . .

Fs(P) := %WW(I)(P) + Eent[P|H1]. (2.1.14)

Identifying the minimizers of either F3 or Fg is a hard question in general, even if one knew
what the minimizers of W are. However, one readily sees the effect of the temperature: in the
minimization there is a competition between the term W,,,, or Wuv(x) based on the renormalized
energy, and which is thus expected to favor crystalline (hence very ordered) configurations, and
the entropy term which to the contrary favors disorder. The temperature determines the relative
weight of these two competing effects: as 8 — 0 (i.e. temperature gets large) the entropy
term dominates and configurations can be expected to behave like a Poisson point process,
while as f§ — oo (i.e. temperature gets very small), the renormalized energy dominates, and
configurations can be expected to crystallize. In particular, as we will observe later, our result
implies that crystallization, in the strict sense of configurations being cristalline, should not be
expected to happen at a finite (fixed) § because cristalline configurations give rise to an infinite
entropy. Thus the cristallization expected in the physics literature can only be a weaker form of
crystallization such as a transition to slower decaying or non-decaying correlation functions.

Our result naturally raises two questions: the first is to understand better W and its min-
imizers and the second is to better understand the specific relative entropy, about which not
much seems to be known in general.

In the particular case of (2.1.1) with a quadratic potential V(z) = 2, the equilibrium
measure is known to be the semi-circular law whose density is given by

1
X — %1[_2721 V4 — 16'2,

and the limiting point process at the microscopic level around a point x € [—2,2] (let us em-
phasize that in this case there is no averaging over translations) is identified for any 5 > 0
in [VV09| to be the “sine-3" point process, which we will denote by Sineg(x) (so that Sineg(x)
has intensity # 4 —2?). They are all equal in law up to rescaling and we denote by Sineg
the corresponding process with intensity 1. It is also proven to be the limit of the B-circular
ensemble [Nak14]. A corollary of our result is then a new characterization of these processes:

Corollary 2.1.3 (Sine-beta process). For any 5 > 0, the tagged point process

Sine ::/ Oz Sinea(a
B 22 (z,Sineg (z))
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minimizes the rate function Fg among tagged point processes in P(X x X). The point process
Sineg minimizes

Fs(P) = iwl(P) + ;ent[Pl'Il]

among stationary point processes of intensity 1 in R.

The one other case in which the limiting Gibbsian point process is identified is the case
(2.1.2)) with V' quadratic, which gives rise to the so-called “Ginibre point process" |Gin65,BS09].
In this case we also obtain the new characterization:

Corollary 2.1.4 (Ginibre process). The Ginibre point process minimizes
Fo(P) = LW, (P) + Lent[P|IT"]
2 Tar ! 2en

among stationary point processes of intensity 1 in R2.

Corollaries and are proven in Section [2.4.3

As mentioned above, the infimum inf 74 is unknown in general and its determination seems
to be a difficult problem. However we know exactly how F 3 depends on py hence on V, because
we know how the W and entropy terms scale in terms of the equilibrium measure density (which
is the same as the point process intensity). For any m > 0, we let o, be the map which rescales
a point configuration by the factor m/?, i.e. turns a configuration of density m into one of
intensity 1. Then we may consider P’ the push-forward of P by the map on ¥ x X

(JI,C) — (.I, U#V(I)C)'

In the case (2.1.3), the rescaling yields

B [P

2¢qd,s

1 _
+ 3 (/ ent[P"|[TTY () d —I—/ py () log py () dx) . (2.1.15)
pX b
In the cases - the rescaling yields

Fs(P) = = (CdS/wl Py @y do =5 [ v @) log (o) da )
+;(/Eent[P’x|H1] pv () dm—i—/z,uv(x) log py () dw)

and in these particular cases, the terms recombine into

FaP) = [ @W“f_”” " ;ent[ﬁ'ﬂnw) (@) da

1 1
+ (ﬂ — 2d> /Z,uv(x) log py (z) dz.  (2.1.16)

There has been a lot of interest recently in proving “universality results" for such systems, i.e.
proving that their microscopic behavior is independent of V', hence of py . Such results have been
obtained in the cases (2.1.1) in [BEY14,BEY12,[BFG13|, etc. In the above formulae, the terms
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not involving uy are independent of puy and V', hence universal. In the cases (2.1.1)—(2.1.2),
since py is a probability measure, one can deduce from ([2.1.16) that

min F 3 = min <20dsW1 + Bent[ |TI ]> <; - 21d) /EM\/(LB) log py (z) dx.

Hence the dependence of min Fg in py is just an additive constant which happens to vanish
when 8 = 2 in dimension 1 and 8 = 4 in dimension 2. This is in agreement with the universality
known in these cases: minimizers of F4 are independent of V hence universal.

In contrast, in py comes as a multiplicative weight and in the minimization of Fg
the relative weights of the energy Wl and of the entropy depend on py : this can be seen
as creating an effective temperature B,uf//d. Hence the minimizers of F will not be universal,
and this indicates that universality, in the sense previously used, fails in higher dimensional
Coulomb cases or in Riesz cases. In other words, universality seems to be directly tied with the
logarithmic nature of the interaction. We note that no positive or negative prediction in that
direction seemed to have been proposed.

A byproduct of the LDP is naturally the existence of a thermodynamic limit for these
systems, i.e. an asymptotic term in IV in the expansion of log Zx g, which in view of the above
discussion is given by :

Corollary 2.1.5 (Thermodynamic limit). Under the same assumptions, we have, as N — oo,

N2—3 _
log Zn g = —5 5 Z(py) — NBmin Fg + o((8 + 1)N) (2.1.17)
in the cases , and in the cases - -
N2 N
log Zn g = —%Z(uv) + ﬁQd log N — NBmin Fg + o((8+ 1)N)

or more explicitly

log Zn g = —BQNZI( v)+ i—dlogN N min <201d W ;entHHl})
1 1
— Ng (5 — Qd) /Euv(x) log py (z) dx + o((B+ 1)N). (2.1.18)

Here the o(1) tend to zero as N — oo independently of 5.

This provides an asymptotic expansion of the free energy (i.e. —% log Zn,) up to order N,
where in view of (2 m, the order N term itself has the structure of a free energy.

The existence of such a thermodynamic limit had been known for a long time for the two and
three dimensional Coulomb cases [LN75,SM76,[PS72]. Our formulae are to be compared with
the recent results of [Shc13,[Shcl4,BG13b,|BG13a,BFG13| in the dimension 1 logarithmic case.
These authors obtain asymptotic expansions of log Zx 3 to much lower orders than this, however
they make quite strong assumptions on the regularity of the potential V', and sometimes the
coefficients are not easy to explicitly compute. Since in this setting , log Zn g is known
explicitly for V(x) = 22 via Selberg integrals, by comparing to (2.1.18) this allows to identify
the value of Fp(Sineg) = min Fz (where Fs is defined in (2.1.14))), and then to immediately
deduce the explicit coefficients in the expansion of log Zn g up to order N for general V' (and
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the difference in the order N coefficient only involves the difference in [ py log puy). In the case
our result can also be compared to the formal result of [ZWO06].

In both logarithmic cases, we recover in the cancellation of the order N term when
f = 4 in dimension 2 and S = 2 in dimension 1 that was first observed in [Dys62, Part II,
section II] and [ZWO06], and when this happens then, Vi and V5 being two potentials satisfying
our assumptions, we obtain

BN

log Zy,5(V2) —log Ziv s (V1) = ———(Z(mz) = Z(un)) + o((B + 1)N)

in agreement with the well-known fact [BIZ80, EMO3| that expansions of log Zy g corresponding
to different potentials V' then differ by an expansion in even powers of N only.

Finally, in the general case of Riesz gases , our result seems to be the first
rigorous one of its kind.

2.1.2 Proof outline

Using the splitting formula (2.1.7)-(2.1.8)), one can factor out the constant terms from the
Hamiltonian and the partition function, and reduce to studying only
1 BN

N
d]P)N’g(CUl, ce ,xN) = KNBefTwN(ml"“’xN)e_Nﬁ Ei:l C(xi) dri...dry (2.1.19)

where

1 2—s/d _1pN
K= Zy etV Hm) =455 1og N

(here the second multiplicative term exists only in the cases (2.1.1)—(2.1.2))). It is already proven

in [PS15, Theorem 6.] (note the different normalization of temperature there) that
|log K g| < CsBN (2.1.20)

with Cg bounded on any interval |3y, +00) with Sy > 0. We next define the reference measure
Qu. as the probability measure on (R%)" with density

e~ NB Zi\;l C(ws)
(s eV )

dQnpg(x1,...,2N) == dzy...dzy. (2.1.21)

The effect of ¢ is that of confining the points to the set w containing the support ¥ of the
equilibrium measure. Thus, one can think of Qy g as being essentially the N times tensor
product of the normalized Lebesgue measure on w, and of (2.1.19)) as being formally

1 N

_ BN
Knp

e T’LUN(:El,.n,fL'N) H ]_w(ﬂj,b)dfﬁl
i=1

To prove an LDP, the standard method consists in evaluating the logarithm of the probability
Py s(B(P,¢)), where P is a given tagged point process, element of P(X x X) (recall (RY)N
embeds into this space via (2.1.9)) and B(P,e) is a ball of small radius e around it, for a
distance that metrizes the weak topology we are working with.
Since

1 e_TNwN(xl,..-,IN) H 1w($z)dxz

P B 15,6 ~ /
N7ﬁ( ( )> KN,,B iN(xl,...,IN)eB(PvE) =1
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we may formally write

: 5 W BN 5
lim log Pw,5(B(P,¢)) = —log Kn,g — —~wn(P)

+ lim log ({@1, - san) €N in(@r, .. an) € B(Po)}]) . (2.1.22)
e—

Extracting this way the exponential of a function is the idea of the Varadhan integral lemma
(cf. [DZ10, Theorem 4.3.1]), and works when the function is continuous. In similar contexts to
ours, this is used e.g. in [Geo93}|GZ93].

In the term in the second line is the logarithm of the volume of point configurations
whose associated “empirical field” is close to P. By classical large deviations theorems, such a
quantity is expected to be the entropy of P. More precisely since we are dealing with blown-up
configurations, or empirical fields, we need to use a relative specific entropy as defined above
(cf. also [RAS09,Geo93|) as opposed to a usual entropy.

The most problematic term in is the second one in the right-hand side, wy (]3), which
really makes no sense. The idea is that it should be close to W(P) which is the well-defined
quantity appearing in the rate function . If we were dealing with a continuous function
of P then the replacement of wy (P) by W(P) would be fine. However there are three difficulties
here:

1. wy depends on N and we need to take the limit N — oo,

2. this limit cannot be uniform because the quantities that define wy becomes infinite when
two points approach each other,

3. wy is not adapted to the topology that we are working with, which is a weak topology
which retains only local information on the point configurations, while wy contains long-
range interactions and does not depend only on local data of the points but on the whole
configuration.

Thus, the approach outlined in cannot work directly. Instead, we have to look again
at the whole ball B(P,¢) and to show that in that ball there is a logarithmically large enough
volume of configurations for which we can replace wy by W(P). This will give a lower bound
on log Py 5(B(P,¢)) and the upper bound is in fact much easier to deduce from the previously
known results of [PS15]. The second obstacle above, related to the discontinuity of the Hamilto-
nian near the diagonals of (R)" | is similar to the difficulty encountered in [BG99]. It is handled
differently though, by controlling the difference between wy and a version of it where the singu-
larities are truncated at some small level . This works out precisely because the renormalized
energies are defined as limits as n — 0 of quantities truncated at the level 7. By controlling this
difference thanks to the tools of [PS15], we are able to show that it is small often enough, i.e.
the volume of the configurations where it is small is logarithmically large enough.

The third point above, the fact that the total energy is nonlocal in the data of the con-
figuration, creates the most delicate difficulty. The way we circumvent it is via the “screening
procedure" developed in [SS12,[SS15b,[SS15a, RS15,PS15]. Each configuration generates a po-
tential, denoted H, and an “electric field" F = VH, and the energy really corresponds to the
(renormalized) integral of |E|2. We show that thanks to the screening, we can always modify a
bit each configuration so as to make the energy that it generates additive (hence local) in space,
while not moving the configuration too far from P and not losing too much logarithmic volume
in phase-space. This will be detailed in Sections and

In the end our result is a consequence of two intermediate results.
~ The first one is a large deviation result for the “reference” empirical field i.e. for the measure
Qn 3, defined as the push-forward of Qu g by iy, cf. (2.1.9) and (2.1.21]). We let

Cwy = log lw| — ||+ 1, (2.1.23)
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where w is the zero-set of (, as mentioned above.

Proposition 2.1.6. For any A C Ps(X x X), we have

_ 1 _
— inf P dx — < liminf — 1 A
4%17135,1/ ent[P*|[I']dx — ¢ 3 < iminf - 0g QN 5(A)

1 = _
<limsup —log Qng(A) < — inf/ ent[P*IIYdz — cpx.  (2.1.24)
N—o00 N PeA )y

In and in the rest of the paper, if A is a set of (tagged) configurations, A denotes the
interior of A and A denotes the closure of A. The meaning of the (technical) restriction AN Psa
will be precised later, let us say that P, 1(X x X') denotes the set of tagged point process of total
intensity 1 (i.e. there is an average number of 1 point by unit volume, see Section .

Quantities obtained by averaging a given configuration over translations as in , are
called “empirical fields”. The first large deviations principles for empirical fields seem to be
stated in [Var88], [F6188] and the relative specific entropy was then formalized by Follmer and
Orey |[FOS8§| in the non-interacting discrete case (see also [RAS09] for another approach), by
Georgii [Geo93] in the interacting discrete case and Georgii and Zessin [GZ93] in the interacting
continuous case. In that light, the result of this proposition is not too surprising, however our
setting differs from the one of [GZ93] in that the reference measure Qu g is not the restriction
of a Poisson point process to a hypercube but somehow only approximates a Bernoulli point
process on some domain w - which is not a hypercube - with the possibility of some points
falling outside w. Moreover we want to study large deviations for tagged point processes (let us
emphasize that our use of “tags” is not the same as the “marks” in |GZ93|) which requires an
additional approximation argument. The proof of these successive adaptations to our context
occupies Section [2.7]

Let us say a word about the choice of topology on X. It is well known that large devia-
tion principles hold for empirical fields after endowing X with a strong topology, namely the
T-topology (the initial topology on X associated to the maps C — f(C) for any bounded mea-
surable function f which is local in the sense of (2.2.30)), see e.g. [Geo93], [RAS09]. Altough we
expect both Proposition and Theorem [J] to hold with this stronger topology, with essen-
tially the same proof, we do not pursue this generality here. Let us here emphasize that even
when restating Proposition [2.1.6] in the 7-topology our main theorem does not follow from an
application of Varadhan’s integral lemma, because wy is neither bounded nor local.

Proposition is then complemented by the following result, which essentially yields the
main theorem:

Proposition 2.1.7. Let P € Ps1(X x X). For all 61,02 > 0 we have

lim —logQNg ( (P, 51)0TN52(]5)) > —/ ent[P*|TI'dz — c,, 5, (2.1.25)
N—}OO ’ » ’
where T s, (P) denotes a set of point processes obtained from N -uples of points (x1,...,xy) by

iN(x1,...,xN) (where iy is defined in (2.1.9) ) which satisfy

wy (w1, ... 2n) < W, (P) + da.

This proposition is the hard part of the proof. To obtain it we need to show that the set
TN,52(]5) has enough volume in phase-space. This relies on taking arbitrary configurations in
B(P,6;) and showing that a large enough fraction of them (in the sense of volume) can be
screened and modified to generate a small energy truncation error, as alluded to above.
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2.1.3 Open questions and further study

a. Crystallization and phase transitions.

Let us observe the following :

Lemma 2.1.8. Let T’ be a point configuration periodic with respect to some lattice A € R% and
let Pr be the associated stationary point process defined by

PF ::][ 69z-Fd~75-
A

Then the specific relative entropy ent[Pp|TII'] is equal to +oc.

Proof. 1t is in fact easy to see that for any integer N the point process induced by Pr in the
hypercube C}p is absolutely singular with respect to the Poisson point process H|10N hence the

usual relative entropy Ent[Pp ¢, |H‘ICN] is infinite. Thus by definition we also have ent[Pp|TT!] =
+00. O

It follows from Lemma[2.1.8|that if 3 is finite, the minimizer of Fj cannot be a periodic point
process and in particular it cannot be the point process associated to some lattice (or crystal).
Hence there is no crystallization in the strong sense i.e. the particles cannot concentrate on an
exact lattice. However some weaker crystallization could occur at finite § e.g. if the connected
two-point correlation function p —1 of minimizers of F3 decays more slowly to 0 as 3 gets larger
or ceases to be in L! for 5 greater than some .. Hints towards such a transition in the behavior
of pa — 1 for the one-dimensional log-gas may be found in [For93] where an explicit formula for
the two-point correlation function is computed for the limiting point processes associated to the
p-Circular Ensemble (which according to [Nak14] turn out to also be Sineg).

Such a change in the long-distance behavior of ps would not necessarily imply a first-order
phase transition i.e. a singularity in the first derivative of g+ min F3, as would be implied e.g.
by the existence of two minimizers of F3 with different energies. The existence of a first-order
phase transition in the two-dimensional logarithmic case (also called the two-dimensional one-
component plasma) is discussed in the physics literature, see e.g. [Sti98]. On the other hand, it
might be that for some 3 there exists several minimizers of Fg with the same energy and the
physical implications of such a situation is unclear to us. Let us note that uniqueness of the
minimizers (or at least the fact that they all have the same energy, hence the same entropy)
would for example allow to retrieve as a straightforward corollary of our LDP the equiparitition
property shown in [BMSS13] for S-models.

In the following paragraph we collect some open questions, stemming from the ones discussed
above.

b. Open questions.

— Is the minimum of F3 unique? Let us observe that the specific relative entropy ent[-|TI']
is affine, hence so is F3 and no easy “strict convexity” argument seems to hold. Do at
least all the minimizers of F3 share the same energy and entropy?

— Can the variational characterization of the Sineg, Ginibre and other limiting point pro-
cesses be used to provide more information on these processes?

— Does crystallization hold in a weak sense, e.g. at the level of a change in the large-distance
behaviour of the two-point correlation function of minimizers of 3 when /3 crosses some
critical value?
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— Can we characterize the minima (minimum?) of W, for d > 2? Can we at least prove
that any minimizer of W; has infinite specific relative entropy, which would be a first
hint towards their conjectural “ordered” nature?

— Is there a limit to the Gibbsian point process Py g, defined as the push-forward of Py g
by (z1,...,zN) — Zi]\il dn1/a,, and of their translates 0, - Py g for x in the “bulk” (the
interior of ¥) ? In the cases where the existence of a limit is known, can we find a purely
“energy based” proof? Can we at least prove that any limit point of Py g is translation
invariant? Can we at least prove the mere existence of limit points for a general class of
V,s,d?

— Can one somehow use the next-order information on Zy g of Corollary to prove a
central limit theorem for the fluctuations?

c. Further study.

In order to deduce further consequences of the LDP, it is more convenient to express the
renormalized energy of a point process in terms of its two-point correlation functions. This is
inspired by [BS13] and is the object of [Lebl5b|. This approach allows one to obtain further
qualitative information, as the convergence of minimizers of 73 to a Poisson point process in
the limit 5 — 0, thus retrieving results of [AD14] in the special case of sine-beta processes.

The result of Theorem [9 characterizes the microscopic behavior in an averaged way, the
average scale being macroscopic (roughly speaking, one can deduce from it the microscopic
point processes obtained by averaging over B(z,¢) for any z € ¥ and ¢ > 0), whereas local
laws consist in replacing the macroscopic average as in by averages at microscopic scales
e=Nfor0<é< é. In [Lebl5a] the techniques of the present paper are pushed further in
order to derive a LDP concerning such finer scale observables.

The rest of the paper is organized as follows: Section [2.2] contains our assumptions, the defi-
nitions of the renormalized energy and of the specific relative entropy, as well as some important
notation. In Section [2.3] we present some preliminary results on the renormalized energy. Section
contains the proofs of the main results and corollaries, assuming the results of Propositions
2.1.6land [2.1.7] In Section[2.5 we recall the screening result and describe the procedure to screen
random point configurations. We also describe the regularization procedure. In Section [2.6] we
complete the proof of Proposition by showing that given a random point configuration we
can often enough screen it and regularize it to have the right energy. In Section [2.7] we prove
Proposition In Section 2.8 we collect miscellaneous additional proofs.

Acknowledgements : We would like to thank Paul Bourgade, Percy Deift, Tamara Grava,
Jean-Christophe Mourrat, Nicolas Rougerie and Ofer Zeitouni for useful comments.

2.2 Assumptions and main definitions

2.2.1 Our assumptions

We now start to describe more precisely the setting in which we work, which is identical to
that of [PS15].

We first place assumptions on V' that ensure the existence of the equilibrium gy from stan-
dard potential theory:

V is lower semi-continuous (l.s.c.) and bounded below

{z : V(x) < oo} has positive g-capacity

lim, o0 V(7) = 00, resp. lim, o @ — log || = 400 in cases (2.1.1)) — (2.1.2)
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The following theorem, due to Frostman [Fro35] (cf. also [ST97]) then gives the existence
and characterization of the equilibrium measure (let us recall that the energy functional was

defined in (2.1.6)):

Theorem 10 (Frostman). Assume that V satisfies 7, then there exists a unique
minimizer puy € P(RY) of T and I(py) is finite. Moreover the following properties hold:

— Y :=supp(uy) is bounded and has positive g-capacity,

— for c:=TI(pv) — [ Ydpy and H* (z) := [ g(x — y)duy (y) there holds

HHV 4 % > c quasi everywhere (q.e.)
HHv —|—% =c gq.e. on.

We now define the function ¢ that appeared above:
(:=H" +4% —c>0. (2.2.4)
We let w be the zero set of ( and by Theorem [10| we have
Y Cw:={¢(=0}.

The function H*V is the solution to a classical obstacle problem in the Coulomb case, respectively
a fractional obstacle problem in the other cases (cf. [CSS08]). The set w then corresponds to
the contact set or coincidence set of the obstacle problem, and X is the set where the obstacle
is “active", sometimes called the droplet.

We will assume that py is really a d-dimensional measure (i.e. X is a nice d-dimensional set),
with a density, and we need to assume that this density (that we still denote py) is bounded and
sufficiently regular on its support. More precisely, we make the following assumptions (which
are technical and could certainly be somewhat relaxed):

oY is Ct
py has a density which is C%* in ¥,
Jer, co,m > 0 s.t. cpdist(z, 0X)* < py (x) < min(epdist(z, 03)%,m) < o0 in X,

with the conditions

2kd
0<k<l, 0<a< : 2.2.8
= == 2d — s ( )
Of course if o < 1 one should take Kk = «, and if o > 1, one should take kK = 1 and o < d%“l‘s.

These assumptions are meant to include the case of the semi-circle law %\/4 — 2?1 ()

arising for a quadratic potential in the setting . We also know that in the Coulomb cases,

a quadratic potential gives rise to an equilibrium measure which is a multiple of a characteristic

function of a ball, also covered by our assumptions with & = 0. Finally, in the Riesz case, it was

noticed in [CGZ14) Corollary 1.4] that any compactly supported radial profile can be obtained

as the equilibrium measure associated to some potential. Our assumptions are thus never empty.
The last assumption is that there exists $; > 0 such that

(2.2.9)

[e PV@/2 4y < o in the case ([2.1.3)
fefﬁl(vgz) “loglzl) 4 < 00 in the cases (2.1.1)-(2.1.2),

It is a standard assumption ensuring the existence of the partition function.
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2.2.2 The extension representation for the fractional Laplacian

In the next two sections, we recall elements from [PS15]. Our method of proof relies on ex-
pressing the interaction part of the Hamiltonian as a quadratic integral of the potential generated
by the point configuration via

g*y 0y
(2

(where x denotes the convolution product) and expanding this integral interaction to next order
in N. Outside of the Coulomb case, the Riesz kernel g is not the convolution kernel of a local
operator, but rather of a fractional Laplacian. However, according to Caffarelli and Silvestre
|CS07], when d — 2 < s < d, this fractional Laplacian nonlocal operator can be transformed
into a local but inhomogeneous operator of the form div (Jy|”V-) by adding one space variable
y € R to the space R%. We refer to [PS15] for more details. In what follows, k¥ will denote the
dimension extension. We will take £ = 0 in all the Coulomb cases, i.e. s =d—2 and d > 3 or
. In all other cases, we will need to take k = 1. Points in the space R? will be denoted by
x, and points in the extended space R¥T* by X, with X = (z,7), z € R%, y € R¥. We will often
identify R? x {0} and R
If v is chosen such that
d—2+k+vy=s, (2.2.10)

then, given a measure p on R?, the potential H*(x) generated by u defined in R? by
1 /
H'(z) = g+ p(x) = /]Rd mdﬂ(ﬂﬂ)

can be extended to a function H#(X) on R** defined by

1) = | (11,,70”3 dp(a’)

and this function satisfies
—div (Jy|"VH") = cq s ptdpa (2.2.11)

where by dga We mean the uniform measure on R? x {0} i.e. udga acts on test functions ¢ by

[ #0d8:0) (0 = [ ow,0) du)
Rd+k Rd

and L4 iga)
2s # for s > max(0,d — 2) ,
Cd,s = 271'%
’ (d—2)m fors=d—-2>0,

2 in cases (2.1.1), (2.1.2) .

In particular g(X) = | X| ™% seen as a function of R4 satisfies
—div (|ly["Vg) = cd,s0- (2.2.12)

In order to recover the Coulomb cases, it suffices to take k = v = 0, in which case we retrieve
the fact that ¢ is a multiple of the fundamental solution of the Laplacian. If s > d — 2 we take
k =1 and ~ satisfying (2.2.10). In the case (2.1.1)), we note that g(z) = —log|z| appears as
the y = 0 restriction of —log|X|, which is (up to a factor 27) the fundamental solution to the
Laplacian operator in dimension d + £ = 2. In this case, we may thus choose k =1 and v = 0,
cds = c1,0 = 2m, and the potential H#* = gx pu still satisfies , while g still satisfies ([2.2.12]).
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To summarize, we will take
in the case max(0,d —2) < s < d, then k=1, y=s—-d+2—k,

in the case (2.1.1)), then k=1, v=0,
in the case (2.1.2) ord > 3,s=d—2, thenk=0, vy=0.

We note that the formula ([2.2.10]) always remains formally true when taking the convention that
s = 0 in the case g(x) = —log |z|, and we also note that the assumption d — 2 < s < d implies
that in all cases v € (—1,1).

2.2.3 The renormalized energy for electric fields

In this section, we recall the definition from [PS15]. First, let us define the truncated Riesz
(or logarithmic) kernel as follows: for 1 > 7 > 0 and X € R4*¥ let

Fo(X) = (9(X) —g(n) - (2.2.16)
We note that the function f, vanishes outside of B(0,7) C R¥* and satisfies that

L.
") = —div (jy 'V ) + b

»S

is a positive measure supported on dB(0,7), and which is such that for any test-function ¢,

1
/ o1 = / S(X)Nyl"g ().
Cd,S 83(0777)

One can thus check that 6(()77) is a positive measure of mass 1, and we may write

—div (|y|"V£,) = cas(8 — 6")  in RIF,

We will also denote by 5,()77) the measure 5877) (X —p), for p € R% x {0}. Again, we note that this
includes the cases f. In the Coulomb cases, i.e. when k = 0, then 5(()77) is simply
the normalized surface measure on 9B(0,n).

We are now in a position to define the renormalized energy for a finite configuration of
points, i.e. the quantity wy appearing in f. It is defined via the gradient of the
potential generated by the point configuration, embedded into the extended space R**. More
precisely, for a configuration of points (z1,...,zy), we introduce the potential Hy generated
by the points and the “background charge" Npuy:

N
Hy =g <Z Oz; — Nuvf?Rd) : (2.2.17)
i=1
We also introduce the blown-up configuration («f,...,2%) = (Nl/darl, e ,Nl/de), the blown-

up equilibrium measure of density i, (z') = puy (N~'/?2’), and the blown-up potential

N
HJIV = gx* (Z 512 - [,LQ/(st> . (2.2.18)

i=1
In view of the discussion of Section Hy and HY can be viewed as functions on Rk
satisfying the relations

N N
—div ([y["VHN) = cqs (Z O; — NuvéRd> —div(ly"VHy) = cas (Z Og; — u’v5Rd>

i=1 =1
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The gradients of these potentials are called “electric fields” and denoted F, by analogy with the
Coulomb case in which they correspond to the physical electric field generated by the points
viewed as singular charges.

In the sequel, we will always identify a point configuration with the sum (possibly with
multiplicity) of Dirac masses that it generates, i.e. C will mean a sum of Dirac masses with
integer weights, as well as a point configuration.

For any electric field F solving a relation of the form

—div (Jy|"E) = cas (C — m(m)éRd) in RITF,
where C is some locally finite point configuration in R? x {0} (identified with R?) we define
E,=FE—-Vf,*C (2.2.19)
where * denotes again the convolution product i.e. (Vf,*C)(x) = > ,cc Vfy(z —p). Let us
note that this convolution product is well-defined because f,, is supported on B(0,7) and C is
locally finite. If E happens to be the gradient of a function H, then we will also denote

H,:=H — f,*C. (2.2.20)

This corresponds to “truncating off” the infinite peak in the potential around each point of the
configuration:

Remark 2.2.1. If H = gx (szil Oz, — m($)5Rd> then the transformation from H to H, amounts

to truncating the kernel g, but only for the Dirac part of the r.h.s. Indeed, letting gn(x) =
min(g(z), g(n)) be the truncated kernel, we have

N
Hy = gy * (Z ‘5@) — g * (mlga).
i=1

We may then define the truncated versions of Hy and HY as in (2.2.20)), in particular

N
HJ/V,n =Hny— an(ﬂf - 55;,) (2.2.21)
i=1
With this notation, we let
wn (@1, TN =~ lim WP [V HY [ — Nea.sg(n) (2.2.22)
WA BN Ncgs n—=0 \ Jra+k Nom d,sg\1) | - e

It is proven in [PS15| that this limit exists and that with this definition, the exact relations
f hold. With the presence of the factor % the quantity wy is expected to be
typically of order 1.

The renormalized energy of an infinite configuration of points (already at the blown-up scale)
is defined in a similar way, via an electric field which is the gradient of a potential associated to
the configuration. Note that while for a finite configuration of N points, we may find a unique
potential generated by it via , for an infinite configuration there is no canonical choice of
such a potential (one may always add the gradient of a function satisfying —div (|y|"VH) = 0.
This explains the need for a definition based on the electric field, and a definition down at the
level of points.
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Definition 2.2.2 (Admissible vector fields). Given a number m > 0, we define the class Ay, to
be the class of gradient vector fields E = VH that satisfy

~div (|y|"E) = ca,s(C — mdga) in RIE

where C is a point configuration in R? x {0}.

This class corresponds to vector fields that will be limits of those generated by the original
configuration (x1,...,zy) after blow-up at the scale N 1/d pear the point z, where m = wy ()
can be understood as the local density of points.

We are now in a position to define the renormalized energy. In the definition, Cr denotes as
before the hypercube [—R/2, R/2]%.

Definition 2.2.3 (Renormalized energy). For any m >0, VH € A, and 0 < n < 1, we define

, 1
W,(VH) = limsup (Rd/ IyWVHnIZ - mcdﬁg(n))
CRXRk

R—o0

where H,, is as in (2.2.20)), and
W(VH) = %12(1] Wy,(VH). (2.2.23)

Let us observe that the value of the parameter m is implicit in the notation W(VH). In fact
for any given F = V H, there exists at most one m > 0 such that F is in 4, hence there is in
fact no ambiguity.

Definition 2.2.4 (Scaling on E). We define the following “scaling” map allowing us to pass
bijectively from an electric field in Ay, to an electric field in A;. We let

s+1

omE :=m~ T E(-m~ /%) (2.2.24)

By scaling, we may then always reduce to studying the class A;, indeed, if £ € A,,, then
omE € Ay and

Wy(E) =m'" DWW a(omE)  W(E) =m!'™/ W (0, E) (2.2.25)
in the case (2.1.3), and respectively

Wy(E)=m (Wmn(amE) - %r log m) W(E) =m (W(amE) - 2% log m) (2.2.26)

in the cases (2.1.1)—(2.1.2).

The name renormalized energy (originating in Bethuel-Brezis-Hélein [BBH94] in the context
of two-dimensional Ginzburg-Landau vortices) reflects the fact that [ |y|7|VH|? which is infi-
nite, is computed in a renormalized way by first changing H into H, and then removing the
appropriate divergent part cd,sg(n) per point.

It is proven in [PS15] that the limit in (2.2.23) exists, {W, },<1 are uniformly bounded below
on A; by a finite constant depending only on s and d, and VW and W, have a minimizer over
the class A;. We can also note that VW does not feel compact perturbations of the points in
C. As already mentioned the questions of identifying min 4, VW is open, and we expect some
(Bravais) lattice configuration to achieve the minimum, at least in low dimension. In [SS12] it
is proven that in the case , W achieves its minimum over lattice configurations of volume
1 at the triangular lattice. The same result is extended to the general case in dimension
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2 in [PS15]. In dimension 1, the minimum of W is known in the case (2.1.1): it is the value
obtained at the lattice Z [SS15a], cf. [Leb15c| for uniqueness.

We let A = Up,>0A;, be the class of all m-admissible gradient vector fields for any m > 0
(let us note that in the definition of A the union over m > 0 is in fact disjoint). It is observed
in [PS15] that A is contained in L (RT* R for any p < pmax := min(2, %, 44k (note
that they blow up exactly like 1/|X |**1 near each point of C). These spaces LI (R¥+* RI+k) are
endowed with the strong local topology. We note that A is a Borel subset of L (R4*tk RI+K)

loc
for p < pmax and that W : A — R U {+oc} is measurable.

2.2.4 Point configurations and point processes

In this section we introduce or recall the notation that we will use throughout the paper.

a. General.

If (X,dx) is a metric space we endow the space P(X) of Borel probability measures on X
with the Dudley distance:

dp(X) (Pl, Pg) = sup {/F(dpl — dP2)| F e Lipl(X>} (2.2.27)

where Lip; (X) denotes the set of functions F': X — C that are 1-Lipschitz with respect to dx
and such that [l < 1. It is well-known that the distance dp(x) metrizes the topology of
weak convergence on P(X). If P € P(X) is a probability measure and f : X — R% a measurable
function, we denote by Ep [f] the expectation of f under P.

b. Point configurations.

If A is a Borel set of R? we denote by X (A) the set of locally finite point configurations in
A or equivalently the set of non-negative, purely atomic Radon measures on A giving an integer
mass to singletons (see [DVJ88]). As mentioned before, we will write C for 3 ¢ dp.

We endow the set X' := X' (R?) (and the sets X'(A) for A Borel) with the topology induced
by the topology of weak convergence of Radon measure (also known as vague convergence or
convergence against compactly supported continuous functions). If B is a compact subset of R?
we endow X (B) with the following distance:

dx(p)(C,C") := sup {/F(dc —dC| F € Lipl(B)} : (2.2.28)

The total mass C(B) of C on B corresponds to the number of points of the point configuration in
B and when C(B) = C'(B) the distance dy(g) coincides with the “minimal connection” distance.
We endow & := X (R%) with the following distance:

2k \ (C(Cy) +C'(Cy))

k>1

1 dX(C )(Cv C/)
d )= — k 1]. 2.2.2
We denote by Lip;(X) the set of all functions F' : X — C that are 1-Lipschitz with respect
to dy and such that ||F||c < 1. We say that a measurable function f : X — C is local when
fiC)=f(CNC) forall Ce X (2.2.30)

for some integer k. We denote by Locg(X) the set of functions that satisfies (2.2.30) for a fixed
integer k and we let Loc(X') := Up>1Lock(X).
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Lemma 2.2.5. The following properties hold:
1. The topological space X is Polish.

2. The distances dy(py and dx are actual distances compatible with the respective topologies
on X(B) and X.

3. Any bounded continuous function F : X — C can be approximated by a sequence of
bounded local functions. Moreover the approrimation is uniform on the set of 1-Lipschitz
functions in that for any § > 0 there exists an integer k such any function F € Lip;(X)
is 0-close (in sup-norm) to some local function f € Lock(X).

Lemma [2.2.5] is proven in Section [2.8

c. Translations, volume, compactness.
The additive group R? acts on X’ by translations {;},cpa: if C = {z;,i € I} € X we let
0;-C := {l’z —t,1 € I}.

We will use the same notation for the action of R? on Borel sets of R?%: if A is Borel and ¢t € R?,
we denote by 6; - A the translation of A by the vector —t.

For any integer N we identify a configuration C that has N points with all the N-uples of
points in R? which correspond to C and if A is a set of configurations with N points we denote
by Leb®Y(A) the Lebesgue measure of the corresponding subset of (R%)Y.

If C is a point configuration, z € R? and R > 0 we denote by N (z, R)(C) the number of
point of C in Cr. The following lemma is elementary:

Lemma 2.2.6 (Compactness in X). Let C : R — R™ be an arbitrary function, then the following
set is compact in X :

(CeX | Nz, R)C) < C(R) for all R > 0}

Proof. Tt follows from the compactness of the hypercubes Cp for all R > 0 (hence of their powers
C%) and from the definition (2.2.29)) of the distance on X, together with a diagonal extraction
procedure in order to extract a subsequence converging on each Cj, for k > 1. O

d. Point processes.

A point process is a probability measure on X', a tagged point process is a probability measure
on A x X where A is some Borel set of R? with non-empty interior. Usually A will be 3 (the
support of the equilibrium measure p).

When A is fixed, we shall always assume that the first marginal of a tagged point process
P is the normalized Lebesgue measure on A hence we may consider the disintegration measures
{P7} e of P (for a definition see [AGS08, Section 5.3]), such that for any measurable function
F on A x X we have

BplF) = f BpulP(o. )}dz

We denote by Ps(X') the set of translation-invariant (or stationary) point processes. We also
call stationary a tagged point process such that the disintegration measure P? is stationary for
(Lebesgue-)a.e. € A and denote by Ps(A x X) the set of stationary tagged point processes.

Let P be a point process. If there exists a measurable function p; p such that for any function
¢ € CO(RY) we have

Ep [Z so(sc)] = /R L pLp(@)p(x)dr, (2.2.31)

zeC



56 CHAPITRE 2. GRANDES DEVIATIONS POUR LES CHAMPS EMPIRIQUES

then we say that p; p is the one-point correlation function (or “intensity”) of the point process
P. For m > 0 we say that a point process P is of intensity m when the function p; p of
exists and satisfies p1 p = m.

We will denote by P 1(X) the set of stationary point processes of intensity 1 and by P 1 (A x
X) the set of stationary tagged point processes (with space coordinate taken in A) such that
the integral on = € A of the intensity of the disintegration measure P* (which is by assumption
a stationary point process) is 1.

We define the following “scaling” map allowing us to pass bijectively from a point process of
intensity m to a point process of intensity 1.

omP = the push-forward of P by C — m!/?C. (2.2.32)

Let us conclude this paragraph with a remark on the notion of convergence of point processes
used here.

Remark 2.2.7. We endow P(X) with the usual topology of weak convergence of probability
measures (for the Borel o-algebra on X ). This induces by definition a notion of convergence
that corresponds to the weak convergence of probability distributions on X. Another natural
topology on P(X) is “convergence of the finite distributions” [DV.J0S, Section 11.1] - sometimes
also called the “convergence with respect to vague topology for the counting measure of the point
process”. The latter might seem weaker than the former, however the two notions of convergence
coincide as stated in [DVJOS, Theorem 11.1.VII].

e. Electric field processes.

An electric field process is an element of P(L}, (R4TF RITF)) where p < pmax, concentrated
on A. It will usually be denoted by P°'*. We say that P°'°¢ is stationary when it is law-invariant
under the (push-forward by) translations 6, - £ = FE(- — z) for any 2 € R? ¢ R? x {0}F. A
tagged electric field process is an element of P(X x LI (R4T* RIH*)) whose first marginal is the
normalized Lebesgue measure on ¥ and whose disintegration slices are electric field processes.
It will be denoted by P, We say that a tagged electric field process P is stationary if for

a.e. ¢ € ¥, the disintegration measure P°°“? is stationary.

f. Application of the stationarity.

We end this section with an elementary lemma exposing a consequence of the stationarity
assumptions which we will make a constant use of.

Lemma 2.2.8. For any P stationary (point or electric) process, resp. P stationary (point or
electric) tagged process, for every T, R > 0, for any ® scalar nonnegative function of the point
configuration or electric field X, we have

Ep [][CTXM O(X(2)) d:(:] =Ep |]£’R><]Rk @(X(m))] .

Moreover Ep [limR_mo JCCRXRk @(X(w))} exists and coincides with Ep [JCCTka O(X(x)) da:} for
any T > 0.
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Proof. The multiparameter ergodic theorem (cf. [Bec81]) ensures that for any 7" > 0

. 1
e lf;TXRk (I)(X(x)) dx] - L%E};O ﬁ /CR ][CTXRk (I)(X(A + :I:)) dx d/\‘|

—Ep [ lim — (I)(X(:c))]

R—oo R Cr

where we used Fubini’s theorem and the fact that 1¢,_, < 1¢, * 1¢, < 1¢p,, and @ nonneg-
ative. The result follows. O

2.2.5 The renormalized energy for point configurations and processes
a. The case of electric field processes.

We may now define the renormalized energy for random electric fields (in all the rest of the
paper we take p < pmax).

Definition 2.2.9. If P is an electric field process, we let

Wy (Pelec) := / Wy(E)dP(E)  W(P") = / W(E)dP9*(E)

whenever the expressions in the right-hand side make sense.
We also define

Wy (o () 1= ][E WPt da, (2.2.33)

whenever_ﬁelec is a tagged electric field process such that for a.e. x € X, the disintegration
measure P°%T is concentrated on Ay (z) (otherwise we set 7HV($)(P61€C) = 400).

b. The case of point configurations and point processes.

For any m > 0 and for any admissible gradient vector field E € A,,, we let

_ —div(|y["E)

Conf,,(E) : -
d,s

+ méga (2.2.34)

be the underlying point configuration. For any E € A there is exactly one value of m > 0 such
that E € A,, and we let Conf(FE) := Conf,,(F) for the suitable value of m, this defines a map
A — X and we denote by X° C X its image i.e. the set of point configurations C for which there
exists at least one admissible gradient vector field E such that Conf(E) = C. It is clear that the
maps Conf,, : A,, — X and Conf : A — X are measurable. Let us note that the fiber of Conf
at any C € X° is always infinite, if F is in the fiber of C we can simply add to E the gradient of
any function satisfying div (Jy|YVH) = 0 on R%** and by doing so we recover exactly the fiber
of C.

We may then define the renormalized energy of a point configuration/process by means of
the renormalized energy of electric field/processes in the fiber of Conf.

Definition 2.2.10. If C is a point configuration and m > 0 we let

W, (C) := inf{W(E) | E € Ay, Cont,,(E) =C}
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with the convention inf(&) = +oo (hence W(C) = 400 when C € X\X°).
If P is a point process and m > 0 we let as in (2.1.10))

W, (P) = / W, (C)dP(C).

If P e P(X x X) is a tagged point process we let as in (2.1.11])

o 1 _ _
W, (P) := /EW”V(I)(P )dx.

Cd,s

In Section [2.8 we will prove the following :

Lemma 2.2.11. If k=0, two E’s in A, such that Conf,,(E) =C and W(E) is finite differ by
a constant vector field, and if k =1, an E € Ay, such that Conf,,(E) = C and W(E) is finite is
unique. In all cases, the inf in the definition of W, is a uniquely achieved minimum.

The following lemma, proven in Section [2.8] is stated for point processes of intensity 1 and
probability P¢°® concentrated on A; and is easily extended to any intensity m > 0 and class
A, by the scaling map (2.2.24)) and the scaling relations (2.2.25)), (2.2.26).

Lemma 2.2.12. Let P be a stationary point process such that Wi (P) is finite. Then there exists
at least one stationary probability measure Pelec concentrated on Ay such that the push-forward
of P by Confy is P and W(P®*°) < +o00. Moreover we have

W1 (P) = min{W(P9*) | P*° stationary and Conf,# P = P}, (2.2.35)
where Conf1# P denotes the push-forward of P'® by Conf;.

The identity extends readily not only to point processes P such that Wm(P) is finite
for some m > 0 (with of course Conf,, instead of Conf;) but also to the context of tagged point
processes, by applying the result of Lemma to each disintegration P® (z € X) of a tagged
point process P.

2.3 Preliminaries on the energy

In this section we recall a few facts about the renormalized energies from [PS15/SS15b,SS15a;,
RS15] and we deduce a few new properties which will be crucial for us.

2.3.1 Splitting and lower bound estimates

Here we recall how W is related to the Hamiltonian # . The connection originates in the
exact “splitting formula" mentioned in the introduction in 7, where ( is as in
and wy is as in (2.2.22)). For a proof of this formula in our situation, see [PS15]. Once this is
established, one needs to analyze the limit as N — oo of wy. This was done in the previous
works, and we will make repeated use of the following lower bound, which is an immediate
consequence of [PS15, Proposition 5.2] (in |[PS15] it was given in terms of the electric field
process, but it can be “projected down" at the level of the point processes via the map

and Definition [2.2.10)):

Lemma 2.3.1. Assume V satisfies (2.2.1), (2.2.2)), (2.2.3), and that py is a measure with a
density which is bounded and almost everywhere (a.e.) continuous. For any N, let x1,...,zN €
R and define P,y = in({x1,...,2n}) asin (2.1.9). Assume that wy(z1,...,2x) < C for some




2.3. PRELIMINARIES ON THE ENERGY 59

C independent of N. Then up to extraction of a subsequence, PZ,N converges weakly in the sense
of probability measures to a measure P € P(X x X') which is stationary and

l}\rflijoréf N~17d ('HN(acl, Ce TN — NQI(,uV)) > W, (P) in case (2.1.3)

respectively

N—oo

1 N -
lim inf N <HN(:1;1, oo xn) = N?T(py) + dlogN) > W, (P) in cases (2.1.1) — —(2.1.2),

or equivalently

liminfwy (z1,...,25) > W, (P). (2.3.1)

N—o0

This of course gives a formal lower bound for the energy part in the rate function (or an LDP
upper bound), the difficulty will be in obtaining the corresponding upper bound (respectively
an LDP lower bound).

Remark 2.3.2. The relation (2.3.1) constitutes the I'-liminf (or lower bound) part of I'-convergence.
The result of Proposition implies in particular that given any P € Ps1(X x X) which

has a finite entropy (average of the relative specific entropy), and 41,02 > 0, there exists (for
any N large enough) (z1,...,xN) such that in(z1,...,2x5) € B(P,61) and wy(z1,...,25) <
W, (P) + 0. Taking 61,02 tending to 0 as N — oo, we obtain the upper bound (or T'-limsup)
part of I'-convergence, for stationary P with finite entropy. In fact a careful inspection of the
proof of Proposition|2.1.7 shows that we may remowve the assumption on the entropy. Indeed for
any P stationary such that W, (P) is finite (otherwise there is nothing to prove), starting with
a sequence of N-tuples {XyYn = {(21,...,28)N}N such thatin(Xy) is in B(P, 1) for N large
enough (which can always be constructed by sampling P on large hypercubes) we may, by first
reqularizing Xn and then applying the screening procedure, get another sequence {X\}n such
that in (X)) is eventually in B(P,261) and limsupy_,.. wn(Xy) < W, (P) + 2. Together
with a standard diagonal argument this implies the full I'-convergence of wy to WMV.

On the other hand, it was proven in [SS150,SS515a] that in the logarithmic cases, the T'-limit
of wy is the analogue of W but defined from a different variant of the renormalized energy (with
the same notation W). This allows to check that the two variants of the renormalized energy
coincide over stationary point processes thus answering a question raised in [RS15].

2.3.2 Almost monotonicity of the energy and truncation error

The following is an immediate consequence of [PS15, Lemma 2.3], using the monotonicity of
g. It shows the almost monotone character of the limit defining wy, and provides at the same
time an estimate of the error made when truncating the potentials at a level 7.

Lemma 2.3.3. Forany x1,...,xn € RY, letting Hj'v’n be as in (2.2.21)), for any1/2 >n>7>0
we have

d—s

— CN||py | pen 2

< ([ WPV H P = Newa(n)) = ([ 1oV, - New(o)
Rd+k Rd+k

d—s
<SCN|pvllen'z +cas >, glla —j)).
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where C' depends only on d and s. In particular, sending T — 0 yields that for alln < 1/2,

(DN < Negauy(ar,oovaw) = ([ ol IV HiG,P = Negugn))
R

< o0y(1)N +cq6 Z g(|lzi —z4]). (2.3.2)
i#j, |z —x;|<2n

where the term o, (1) goes to 0 when n — 0 and is independent of the configuration.

Let us note that a lower estimate on the error of a similar form can also be obtained for finite
N, however we will rather need such a lower estimate on the limiting renormalized energy, which
will allow us to control the interaction due to close points by the truncation error W — W,,.

Lemma 2.3.4. Let E € A, be such that W(E) < +o00. For any 1 >n > 0 we have

) ) 1 d—s
coslimswplimsup g S (gllp—al+7) — glm)s < W(E) — Wy (E) + Oy’
70 Rooo p#qECNKR,|p—q|<n

where C' depends only on s and d.

Proof. In [PS15| (2.29)] it is proven that for 0 < 7 < n < 1, we have

d=s . Cd,s
—Cm®n > +limsup 5 > (gllp— gl +7) = 9(n)4 < Wr(E) = W,(E).
R—o0 p#qECNKR_3

It then suffices to let 7 — 0 to conclude. O

The next important property of wy and W is that they control the number of points and
their “discrepancies” (i.e. the difference between the number of points in a ball and the integral
of the equilibrium measure over that ball), as well as the electric fields themselves.

2.3.3 Coerciveness of the energy

In view of the monotonicity properties of W and wy, an upper bound on the renormalized
energy of an electric field F translates into a bound on E, in L? with weight |y|7, for any 7
small. This in turns easily implies a bound on F in LP spaces according to the following lemma:

Lemma 2.3.5. Let K be a compact set with piecewise C' boundary and let E be a vector field
satisfying a relation of the form

—div (|y|"E) = cas (C - ,LL(SRd> in K x RF
where C is a point configuration in K and i is a bounded measure on Cg, and let E, be given

by ([£.2.19).

For any 0 <n <1, for any p < pmax, we have

1/2
”E”LP(Kka) <C (/ !yWIEn\2> + Cpna,sC(K).
K xRk

with a constant Cpp 4 depending only on p,n,d,s such that Cp 45 — 0 when n — 0 and the
other parameters are fived, and a constant C depending on K, p,s,d.
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Proof. Using Holder’s inequality, we note that L|2y|'Y(K ) embeds continuously into LP(K) for
1 < p < min(2, %) < Pmax- The lemma follows from observing that

1B o (rcxriy < 1| 2o (2 iy + IV Syl 2o C (K.,
which follows from Minkowski inequality and the definition of F,. O

We may now state a compactness result for electric fields.

Lemma 2.3.6. For any compact set K C R® with piecewise C' boundary, let {En}n be a
sequence of vector fields in LP(K,R¥*) such that

—div ([y|"En) = ca,s (Cn — pindga) in K x R (2.3.3)

for a certain sequence {Cp}n of point configurations in K and {un}n of bounded functions on
K. Assume that {Cp}rn, converges to C and that {,}n converges to p in L>°(K). For anyn > 0,
if [resmr [Y | Ennl? is bounded uniformly in n, then there exists a vector field E satisfying

—div (Jy["E) = c4,s (C — pdga) in K x R

and such that for any n >0, z € [0, +0o0]

J A T (R (23.4)
K x[—z,2]* n+o0 S K x[—z,z2]k
and in the case k =1, for any z > 0
/ Wl B2 < liminf/ ]| En 2. (2.3.5)
Kx(R\(=z,2)) o0 JK X (R\(~2,2))

Proof. The sequence {E,, ,}» is bounded in L|2y|7 (K x RF,R9t*) hence we may find a vector field
E such that up to extraction the sequence { E,,},, converges weakly to F in L\2y|7 (K x R* RI+F),
By Lemma the convergence is also in L. for p < pmax hence in the sense of distributions,

loc

and we may take the limit in (2.3.3)). Lower semi-continuity as in (2.3.4)) and (2.3.5)) is then a

consequence of the weak convergence. O

Finally we state a compactness result for sequences of stationary electric processes with
bounded energy.

Lemma 2.3.7. Let {PgecY,, be a sequence of stationary electric processes concentrated on A;
such that {W(P)},, is bounded. Then, up to extraction, the sequence {P'°}, converges
weakly to a stationary electric process P®'¢ concentrated on Ay such that
YA)( pelec s s e yAy( pelec
<
W(P®) < I%nl)g%fW(Pn ) (2.3.6)
Proof. Up to extraction we may assume that the liminf, . in (2.3.6) is actually a lim,, . It

is clear that any weak limit point of {P¢*°},, is stationary and concentrated on Aj;. In view of
Lemma [2.2.8| we have for any R > 0

);\V/(P,slec) - EP,SleC [f

CRXR

) !y\”\En\Q] — cas9(n),
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but the function E — {, w |[y[7|E,|? is weakly lower semi-continuous as observed in the proof
CR xR n
of Lemma thus if P°*¢ is a weak limit point we have
lim W(P%) > W(Peee),

n—oo

Therefore it remains to show that there exists a converging subsequence. Using Lemma [2.2.8| as
above and the boundedness of {W(PS)},, we write for any R,n > 0

EPSIGC [f ‘y|’y’E17|2‘| - Cd,sg(n) S C
CRXRk

From Lemma we deduce that { [ ||E| 1o(cy)dPg}y is also bounded for any p < pmax,
and this for any hypercube Cr (R > 0). Using for example Lemma 2.1 in [SS12| and the
coerciveness of the LP norm, we deduce as in [SS12| Section 2, Step 1] that this implies existence
of weak limit points for {P¢c},,. O

2.3.4 Discrepancy estimates

In this section we give estimates to control the discrepancy between the number of points in
a domain and the expected number of points according to the background intensity, in terms of
the energy. These estimates show that local non-neutrality of the configurations has an energy
cost, which in turn implies that stationary point processes of finite energy must have small
discrepancies. We then apply these considerations to coercivity properties of W.

The first estimate is based on the following energy lower bound, proven in [PS15, Lemma 2.2]
(there it is stated for balls, but the proof for cubes is identical). We let Cr(z) be the hypercube
of center 2 and sidelength R in R? and we denote by D(zx, R) the discrepancy between the
number of points in Cr(z) and its expected value

D(z,R) = / dc — 1(y) dy.
Cr(x) Cr(z)
Lemma 2.3.8. [PS15, Lemma 2.2] Assume E satisfies a relation of the form
~div (|y|" B) = ca,s(C — poa )

in some subset U C R* for some p € L®(U), with C a point configuration, and let E,
b~e associated as in (2.2.19)). Then for any 0 < np <1, R > 2 and x € R? x {0}, denoting
Cr(z) = Cr(x) x [-R/2,R/2], if Cor(z) C U we have

D(z, R)* D(z, R
[ ez PO (, PO, 237
2R(T

for some C depending only on d, s and ||| e -

For finite point configurations we get as a consequence of the previous lemma:

Lemma 2.3.9. For any integer N and any x1,...,oN € R?, we let wy be as in ([2.2.22) and
P,y bein(z1...,zN) as in (2.1.9). Let us define Dy(R) as

Dy (R)(z,C) ::/ dC—/ dusy,
CR CR(Nl/dJE)

1. This is the correct object when dealing with PVN because the configurations have been translated.
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We have
< RS (Cy 4 Cywn (1, - .., xN))

= : Dn(R)
EIBVN [DN(R)2 min (1, R )
with Cp, Co positive constants depending only on d and s.

Proof. Using the definition of P, and ({2.3.7]) we get (applying Fubini’s identity in the first line)
for any fixed 0 < n < 1, with Ey = VH}, is the electric field generated by the configuration
(where H}, is as in ([2.2.18))):

_ ' Dn(R) CR® / / 2
E, |D 2 1 < E
Puy [ N (R) m1n< " Rd )] = N Jnvas Jo,.Cop Y"1 Eal

CRd+s C Rs
<= ([, P 1l = Negugn) + Neasgln)
Rd+k

and we conclude by using ([2.3.2)). O

In the following we specialize to stationary point processes of intensity 1 but the corre-
sponding result for a different intensity is easily deduced by scaling. We denote as previously
by N(z,R) : X — N the number of points of a configuration in the hypercube Cr(z) and by
D(z, R) the discrepancy D(z, R) = N(z, R) — R%. We note that in fact by stationarity their
laws do not depend on z.

[y | By |* <
dtk

Lemma 2.3.10. Let P be a stationary point process such that Wl(P) is finite. Then P has
intensity 1 i.e. Ep[N(0, R)] = R? for all R > 0. Moreover for any R > 1 it holds

Ep [D*(0, B)| < C(C + Wi(P) R = o( R*) (2.3.8)
with C' a positive constant depending only on d and s. This implies for R > 1
Ep [N?(0,R)| < B + C(C + Wy (P))R™. (2.3.9)

Proof. The first point of the lemma is an easy consequence of the second one, indeed from
[2.3.8) we get using Jensen’s inequality that Ep[D(x, R)] = o(R?). On the other hand the
stationarity assumption implies that Ep[D(0, R)] = RYEp[D(0,1)] (for any R > 0) hence in fact
Ep[D(0,R)] = 0 for any R > 0 which implies that P has intensity 1. We now turn to proving
233).

From Lemma we know that we may find an electric process P¢° concentrated on
Aj such that the push-forward of P9¢ by Conf) is P, and satisfying W(P®e¢) = W, (P). Set

no = i. By the monotonicity property (2.3.4]) we see that
/ Wi (E)dPY*(E) < W(P®°) + C < W,(P) +C

with a constant C' depending only on d, s.
In the case k = 1, by stationarity and the definition of W we see that

Epoc [ Lo ry|'*|Eno|2] — [ W (B)AP(E) + caglm) < W) 4,
1 X

with a constant C' depending only on d, s. Hence for any R > 0 we may find T € (R, 2R) such
that

< % (W(PeleC) + C) _ 1

= (Wi(P)+C). (2.3.10)

E poie [ / [ B
Ch X{—T,T}
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Letting C be the hyperrectangle Cr x [T, T]* we have

/V [y Ey, -V = [ —div (|y|"Epy) = ca,s(D(0, R) + 14,), (2.3.11)
QCR CR

where the point configuration is implicitly Conf;(£) and where the error term ry, is bounded
by ny,, the number of points of Conf;(F) in an ny-neighborhood of dCr. We may see the
no-neighborhood of dCE as included in a disjoint union of O(R?!) hypercubes of sidelength 1
and by stationarity we have

Ep[nZ,] < CR*2Ep [N(0,1)?]. (2.3.12)

Taking the expectation of (2.3.11)) against P°°® and using elementary inequalities and (2.3.12)

we get

Ep [D(0. B)’] < CEp. [ /. W\Emr?] ( /| \y|7>+CR2“EP NOP] (23.13)

Cr
In the case k = 0 we have

/&é ly| = CR& = OR*, (2.3.14)
R

whereas in the case k = 1, recalling that v = s + 2 — d — k we easily compute that
T
/ ly|” < CRCH/ ly|" + CRITY < CRIIRST37471 4 R H271 = CRSFL (2.3.15)
8Cr 0
We may also split OCR as the disjoint union of
1. 2d lateral faces of the type [-R/2,—R/2] x ... {£R/2} x --- x [-R/2, R/2] x [-T, Tk,
2. 0 (if k =0) or 2 (if k = 1) faces of the type Cr x {£T}*.
For each of the 2d faces of the first type we may write using the stationarity of P¢

1
E pelec / y’YE 2 = —Epelec / y’YE 2
. [ PR m] L [CRX[_M]IJ 1By
1 2 CRd A1/ Delec d—1 (wyu
< —Epoe W | 2| = =5 (W(P) + C) < CRT (Wi(P) +C), (23.16)
R CRXRk R

whereas for the second type of faces we have, using (2.3.10) and the stationarity of P¢le

B ot [ / |y|W|En0|2] — RYE po [ / |y|W|Em|2]
CRX{—T,T}k C1 X{—T,T}k

< CR*™Y W (P)+C) (2.3.17)
Inserting ([2.3.14]) (if & = 0) or (2.3.15)) (if & = 1), (2.3.16) and (2.3.17) (if £ = 1) into (2.3.13)

we obtain

Ep [D(0, R)?| < C (Wi(P) + C) RO 4+ CR¥2E [N/(0,1)%]. (2.3.18)

The fact that E [A(0, 1)?] is itself bounded by C (Wl (P) + C’) can be deduced from the previous

discrepancy estimate (2.3.7)). Let us denote by 1 the function ¢g :  +— 22 min(1, 2), dividing
[237) by R? we see that for any E € A; it holds, for R large enough,

1 C
——r(D(0,R s/ Y| By |2
rarrPOR) < 7 | (ol
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with the notation Csr as in Lemma m Taking as before the expectation under P it yields

1 1
s Br[UR(D(0, R))] < CB [Rd / y|7|Eno|2]
Car(@)
By stationarity and the definition of W(FE) we have
1 N
Epeice d/ Y7 Eyol?| < C (Wi (PF) + C)
R Car(0)
hence we get )

7 BP[UR(D(0, R))] < C(Wi(P) +C)

which gives a less accurate bound on the discrepancy than (2.3.8) but allows one to bound
E[N(0,1)%] by C (Wi(P)+C). Finally we get [238) from 23.18), and the bound ([23.9)
O]

follows easily from ([2.3.8]).

In particular, we observe that in the two-dimensional Coulomb case (2.1.2)) the bound ([2.3.8])
yields
Ep [D(0, R)?| < C(Wy(P) + C)R?

hence the variance of the number of points for a point process of finite renormalized energy is
comparable to that of a Poisson point process. It is unclear to us whether this estimate is sharp
or not. In the one-dimensional log-gas case however, we have

Remark 2.3.11. In the case (2.1.1)), if P be a stationary point process of finite renormalized
energy then we have

1
lim inf EEP[D(O, R} =0, (2.3.19)

R—o0
in particular the Poisson point process II' has infinite renormalized energy for d =1,s = 0.

Proof. We follow the same line as in the proof of Lemma [2.3.10L We replace (2.3.10) by the
following observation: since fclxR ly|Y|Ey, |2 is finite we have

lim inf(TlogT)/ Y| Eno|? = 0.
T—o0 C1x{-T,T}
In particular we might find an increasing sequence {7} }; with limg_,o, T}, = +00 and

(Tylog T}) / 7By ? = 0.

lim
k=00 CIX{_Tvak}

Setting Ry, = Ti+/log T}, and keeping the same notation as in the previous proof we see that for
k large enough we have

Ry,
Tk log Tk

which proves (2.3.19)). O

The discrepancy estimate (2.3.9) gives a uniform bound on the discrepancy in terms of the
renormalized energy. The next lemma allows to control the number of points on small scales (in
a more precise but non-uniform way) and is based instead on Lemma [2.3.4

Ep[D(0, R;,)?] < CTi(1 + ) = o(Ry),
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Lemma 2.3.12. Let P € Py(S x LI (RF RUHF)) be such that W, (P?°) < +oo, and let
P the underlying tagged point process i.e. the push-forward of P®*¢ by (x, E) — (x, Conf,,, ) E).
Then for any 0 < 7 < n?/2 and n < 1, we have

O B [N (0.7)% ~1)4] + Ep L > 9(lp - QD}

—d
#q€CNC1,Ip—q|<n?/2

<C <WW (Peleey — ][ Wn(PeleC’f)dx> +COn?7s, (2.3.20)
>

for some constant C > 0 depending only on s,d.

Proof. We integrate the left-hand side in the result of Lemma with respect to Pee%% and
obtain, by monotone convergence in 7 and stationarity (cf. Lemma [2.2.8]), that it is equal to

Cd,S hm Sup Epelec,z llm Sup Z (g(|p - Q| + 7-) - 9(77))+
70 R—o0 p£q€CNCR

> yllp—al+7)—gm),

p#qeCNCy

= cq,limsup Ep,
7—0

Using again the monotone convergence theorem in 7 — 0, this is equal to

cidsEpe

> (g(lp—d —9(77))+] :

pF#qeCNCy

Now we note that in all cases (2.1.1))—(2.1.2)—(2.1.3), there exists C' > 0 depending only on s
and d such that if 7 < n?/2,

> (g(lp—ql—gmn),.>C > 9(lp—al)

p#qeCNCy p#qECNC1,|p—ql<n?/2
C o
2

>C Y NEDCWETC) —1Dg2r) = T92r) > (VET(C) — 1)+

ieCiNrzd ieCiNrzd

where we denote by (N (7, 7)(C) the number of points of the configuration C in the hypercube of
center i and sidelength, with 7 € 7Z% whose edges are parallel to the axes of Z% and of sidelength
T.

Using stationarity again, we find that the expectation of this quantity is bounded below by
a constant times the left-hand side in (2.3.20]), and the result then follows from Lemma m
integrated against P®'*“? and then against the normalized Lebesgue measure on X. O

2.3.5 Minimality of the local energy

As already mentioned, given a configuration C in a compact set K and an underlying
(bounded, measurable) density p on K, there exist many electric vector fields that are com-
patible with the configuration i.e. such that —div (Jy|"E) = cq,s(C — pdga). Indeed to any such
vector field one may add any solution of —div (Jy|”E) = 0.

Since the configuration in a given compact set is finite there is however a natural choice,
which we call the “local field”, given by

E¢ .= VH" with H® := cq.g* (C — pdgalr). (2.3.21)
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The following lemma shows that among all possible electric fields for a finite point config-
urations, the local electric field defined by (2.3.21)) has a smaller energy than any “screened”
electric field. The reason is that E'°° is an L\2y|v orthogonal projection of any generic compatible

FE onto gradients, and the projection decreases the L|2yIW norm.

Lemma 2.3.13. Let u be a bounded measurable function on a compact set (with piecewise C*
boundary) K C R%, C a point configuration and E'°¢ the local electric field as in (2.3.21]). Let
E ¢ LY (R4TF RITK) be a vector field satisfying

loc

—di TE) = — ; K
{ div (|y["E) = cq,s (C — péga) in K x R (2.3.22)

E-7=0 on 0K x RF.

Then, for any 0 <n < 1 we have

/RM |y[7\E}7°C\2§/K . Y| | Ey|?. (2.3.23)
X

Proof. First we note that we may extend F by 0 outside of K and since E - v is continuous
across 0K, no divergence is created there, and E satisfies

—div (|y|"E) = cq,s(C — pdpa) = —div (Jy|"E*®) in R, (2.3.24)

Second, we notice that if (2.3.22)) holds we must have C(K) = [ i M, 1.e. there is global neutrality
of the charges in K. This global neutrality implies that H'°® as defined in (2.3.21)) decays like
|Vg| ie. like |z|=*~! as |z| — oo in R¥* and E'°° decreases like |2|~*~2 (with the convention

s = 0 in the cases (2.1.1)—(2.1.2))). If the right-hand side of (2.3.23)) is infinite, then there is

nothing to prove. If it is finite, given M > 1, and letting x s be a smooth nonnegative function
equal to 1 in Cys x [~M, M]* and 0 at distance > 1 from Cyy x [~M, M], we may write

Lol iEP = [ sl — ESP+ [ dul B
Rd+k Rd+k Rd+k
9 YE 7Eloc 'Eloc
+ /1Rd+kXM|y‘( n n ) n
> [ lPIEYE 2 [ (B, - B (VH)
RA+k Rd+k
1 1 1
=[xl By 2 [, — B Vi

where we integrated by parts and used ([2.3.24) to remove one of the terms. Letting M — oo,

the last term tends to 0 by finiteness of the right-hand side of (2.3.23) and decay properties of
H'°¢ and E'°, and we obtain the result. ]

2.4 Proof of the main results

In this section, we give the proof of Theorem [9 and its corollaries, assuming the results of
Propositions and whose proof will occupy the main part of the paper.

2.4.1 Exponential tightness and goodness of the rate function

Lemma 2.4.1. The following holds: B
— For any 8 > 0, the sequences {Png}tn and {Pn g} are exponentially tight.
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— The functionals Wl (resp. Ww) are lower semi-continuous over stationary point pro-
cesses (resp. tagged point processes), bounded below, and have compact sub-level sets.
— The functionals Fg and Fg are good rate functions.

Proof. The exponential tightness of {ﬁNﬁ} N 1s an easy consequence of the fact that the total
number of points in N*/?% is bounded by N. Indeed it implies that for $N7 p-a.e. tagged point

process Py and for any R > 0
Ep, [N(0,R)] < CR?

with a constant C' depending only on V,d. Let us fix two increasing sequences { Ry}, and { My}
going to co. Markov’s inequality implies that for any N,k > 1 for Py s-a.e. tagged point process
Py we have

_ C
Py (N(O, Rk) > Mkaf) < m

Using Lemma [2.2.6] and a simple extraction argument we see that

too o
— N C
K = ’Ql{P,P(N(O,Rk) > MR ) < Mk}

is a compact set in P(X x X') which contains ﬁN,ﬁ—a.e. tagged point process Py.
We may now be more precise in the description of a “typical” (up to very large deviations)
limit point under ‘B 5. Inserting the formula (2.1.7)-(2.1.8) into (2.1.19)), using the definition

(2.1.19)) and the control (2.1.20) on K g, we obtain that for any g larger than any fixed 8y > 0
and any M > 0

1 N A
Py g(wy' ([M, +od]) < e‘éﬁMN/e‘NﬁZi—lf(%) dry ... dzy
Knp
N
< (CsBN—3BMN ( / o~ NBC() dx)
R4

Thanks to assumption ([2.2.9)), for N large enough the function e V¢ is dominated in L' (indeed
¢ behaves like g(z) + 1V — c as |z| — 00), and by the dominated convergence theorem we have

lim [ e V@ gy = |{¢ = 0}| = |w], (2.4.1)
N—oo R4
hence we find ) 1
NlogIP)Nﬁ(wR,l([M, +o0]) < _iﬁ(M -0) (2.4.2)

for some constant C' depending only on d, s,V and (y. Let us define
KN =in (wy'([=00,M))) and KM := Uns1 K.

Equation implies that + log By 5((KM)) < —18(M—C). On the other hand, Lemmam
shows that any limit point of a sequence of finite configurations with bounded energy is sta-
tionary and has finite energy W, (P). This allows to restrict ourselves to studying the large
deviations around tagged point processes P which are stationary and with finite energy. In
particular, as a consequence of Lemma p has intensity py (x) for Lebesgue-a.e. x € 3.
Let us next prove the lower semi-continuity of W; (resp. WW) on the space of stationary
(resp. tagged stationary) point processes. Let {P,}, be a sequence of stationary point pro-
cesses converging to P € Ps(X). We may assume that liminf,, ., W;(P,) < +oo otherwise
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there is I}gthing to prove, and up to extraction we may also assume that liminf,,_, Wl( P, =
lim, oo Wi (P,). By Lemma 2| there exists for each n a stationary electric process Pelec
whose push-forward by Conf; is equal to P, and such that W(Pe) = W, (P,). The sequence
{W(Pﬁlec)} is bounded, which together with Lemma implies that up to extraction we have
pelec Pelec for some electric process Pe® which is also stationary and it is easy to see that
Pelec satisfies Confy# Pe¢ = P.

Moreover we know from Lemma that lim inf,, VNV(PeleC)

we W(P¢) but by assump-
tion we have W(P) = W, (P,) and by definition we have W, (P)

>
< W(P®), hence

W1(P) < liminf Wy (P,)

which implies the lower semi-continuity of W;. The lower semi-continuity of W, is a straight-
forward consequence. The fact that both are bounded below follows from the same fact known
for W. -

To prove the compactness of sub-level sets for Wy and W,W, they key point is to see that
Lemma implies uniform integrability of A/(0, R) against point processes living on any
sub-level set of the energy functional. Then using the compactness result of Lemma [2.2.6] we see
that every sequence of point processes in a sub-level set is tight, hence the sub-level sets (being
closed by lower semi-continuity) are compact.

Finally, it is known that the specific relative entropy ent is a good rate function (see e.g.
[RAS09]), which also implies that ent is and thus Fs and F 3 are good rate functions as the sum
of two good rate functions. O

o Goodness of the rate function implies in particular the existence of minimizers for F3 and
Fa.
2.4.2 Proof of Theorem @ and Corollary [2.1.5

From Propositions 2.1.6| and 2.1.7, the proof of Theorem [g]is standard.
Let P be in Ps(X x X'). Using the notation of (2.1.19)) and (2.1.21)), we have for any d1,d2 > 0

Br.s (B(P, 51))

1 N N
= 7 </ e_N6<> / _ eXp(_fﬁwN(xl,...,.'L'N))dQNﬁ(l’l,...,I‘N)
Knp \Jr in(21,....xx)EB(P,81) 2
1 ~vec\" B w(p
> m (/Re eXp(_i(W(P) + 52))

X QN’g<iN(1}1, R ,a:N) c B(P, (51) and wN(azl, R ,a:N) < W(P) +(52). (2.4.3)
Consequently for any 41,2 > 0 we get
1 — _ 1 - _ _
< los Ty s (B(P,o1) > + log Qs (B(P,61) and wn(w1,...,on) < W(P) + 6

S log Ky g — Q(W(P) +d2) + log/ e~ NEC,
N 2 i

Applying Proposition and using (2.1.23) and (2.4.1]), we get for any da > 0

1 1
lim hmlnf—logiﬁNﬁ ( (P,T)) + Nlog Knp

614)0 N—oo

> —/Eent[Px|H1]da:—(log|w] 2+ 1) + log yw|_§(W(*)+52). (2.4.4)



70 CHAPITRE 2. GRANDES DEVIATIONS POUR LES CHAMPS EMPIRIQUES

More precisely Proposition is only stated for P € Py 1(X x &X) (with the restriction that
the “global” intensity of P is 1) but if W, (P) is finite we know from Lemma that P is
indeed in Ps 1 (X x X) because P® must be a.e. of intensity uy (), and 0therw1se holds
trivially since the right-hand side is —oo. Now by sending d2 — 0, we obtain
W, (P) - (113
9 122% :
(2.4.5)
On the other hand, returning to , we have by lower semi-continuity of WW over stationary
processes as proven in Lemma [2.4.1] and by Lemma [2.3.T] and Proposition [2.1.6]
_ 1 _ _
limsup lim Nlogqsw (B(P,o)) + 7 log K < —/Eent[Pﬂnl}dx— gwﬂv(P) —(1-2)).
(2.4.6)
The exponent1al tightness proven in Lemma [2.4.1] allows one to pass from a weak formulation as
in - i.e. alarge deviation inequality around a fixed P to any subset A C P(X x X).
We then get

01—0 N—oo

1 _ 1 _
lim hmlnf—log%Nﬁ (B(P, (51)> + NlogKN,,B > —/ ent[P?|IT!]dx
by

g

—inf ( /Zent[lel'Il]dm—FzWW(P)) —(-3)

Ped
< liminf 1 (logﬁN (A) + log Ky 5) < lim sup 1 (log By s(A4) +log Ky 5)
~ N—ooo N B )T T Noee N B )

B

<—inf (/E ent[P*|TT')dz + QWW(P)> (-], (247)

PecA

Hence taking A = P(X x X') we see that limy_, o % log Ky g exists and
. 1 . e
J\}gnooﬁl()gKN’B = —finf Fpg. (2.4.8)

Finally, inserting 12.4.8i into (2.4.7) yields Theorem |§|
Combining (2.1.19) and (2.4.8) we immediately get the main results of Corollary For

(2.1.18)) we use the following scaling result:

Lemma 2.4.2. For any m > 0 and P in Ps(X) of intensity m we have
ent[P|TI'] = ment[(0,,, P)|TI'] + 1 — m + mlogm. (2.4.9)

Proof. Let us recall that the usual relative entropy Ent[u|v], where p and v are two probability
measures on the same probability space is defined as [ log (7 d ZE)dp if i is absolutely continuous
with respect to v and 400 otherwise). By a change of varlable C +— m'/4C (as in the definition

(2.2.32)) we get

_ d( )\CN (C)
Ent[(0m P) oy | Mo, ] = /C . log lW] d(omP)|cy (C)

CeX(C, _1,) dl‘[lcN(ml/dc) IC—1n

hence

Entl (o P) [Ty ) = Bntl P, [T, )+ [

dP\Cm71N (C)’
CeXx(C, —1y)

o | T ,1N<c>
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dH‘lc —1N(c) .
W. But the density of a
Poisson point process depends only on the number of point of the configuration and if C is a

point configuration with k& points in X(C,,-1y), we have

thus we are left to compute the quotient of the densities

e—(m™HN (L —1 Nk
a, () 1)

— k! — e—(m_l—l)N—klogm.
dIl, (m/C) N (N)F
N k!

Since P has intensity m, the average number of points of a configuration under P in X(m~!N)
is N hence we get

Ent[(amP)|CN|H‘lCN] = Ent[P‘Cm_lN|H‘10m ] = (m™! = 1)N — Nlogm.

-1y

Dividing the previous identity by N and taking the limit N — oo yields, by definition of ent
1
ent[(0,, P)|TT'] = —ent[P|TT'] = m~ ' 4+ 1 — logm.
m

Consequently, if P is of intensity m, (2.4.9) holds. O

From Lemma we observe that if P is a stationary tagged point process such that P*
has intensity py (z) for Lebesgue-a.e. x € X, then

/ ent[P?|IT!]dx = / uv(x)ent[(aw(x)Px)\Hl]dm +1X] -1+ / py () log py ()
b b b

which yields the scaling for the entropy term in (2.1.15)) and (2.1.16)), moreover the term (|X|—1)

cancels with that of (2.4.7)).

2.4.3 Properties of the limit Gibbs measure

The large deviation principle of Theorem [J] deals with the empirical fields associated to
the Gibbs measure Py g, when averaging the random configurations over translations in the
support of the equilibrium measure. A natural question is to ask about the behaviour of the
Gibbsian point process itself, that is the push-forward Py g of Py 3 by the map (z1,...,zn) —
Zi]\il dpn1/dg,- The mere existence of limit points for {Pn g} n is unclear in general. Since we are
not averaging over translations, we cannot use the discrepancy estimates as in Lemma [2.3.10] to
bound the number of points in a given compact set.

In this section we recall some known results of convergence of the (non-averaged) Gibbsian
point process and connect them with the minimization of the LDP rate function.

a. Sine-beta processes

In [VV09] Valko and Virag define a family indexed by 8 > 0 of point processes called “Sine-3
processes” (by analogy with the usual sine-kernel, or Dyson sine process, known for 5 = 2) and
prove the convergence of the Gibbsian point process associated to the (random) eigenvalues of
[-matrix models to the Sine-f process.

For x € [—2,2] let us denote by Sineg(z) the Sine-f process of [VV09] rescaled to have inten-
sity %\/4 — 2. For any 8 > 0, let Py g be the point process induced by pushing-forward
the Gibbs measure corresponding to the case d = 1, s = 0 and V(z) = 22 by the map
(z1,...,2n5) — SN, 6 Nz;- The following is an immediate consequence of [VV09, Theorem1]:

For any = € (—2,2), for any § > 0, we have 8y, - Pn g = Sineg(z). (2.4.10)
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The convergence = is proven in [VV09] “in law with respect to vague topology for the counting
measure of the point process” which coincides with the notion of convergence used in this paper
as explained in Remark [2.2.7]

We now give a proof of Corollary 2. 1 e. the minimality of 4 at Sineg.

Proof. Let F: ¥ x X — C be a bounded continuous function. By definition we have

Eg [ / F(x,C)dP(x,C)}:EpNﬂ / Flx,0xs - C)dz| = / Ep, , [F(z,0x, -C)] d
N.B ’ [—2,2] [—2,2] '

From (2.4.10) we know that the sequence of functions {z +— Ep, , [F'(x,0n, - C)]}n converges
almost-everywhere on [~2,2] to  — Egine,()[£'(z,C)]. Since F' is bounded the dominated
convergence theorem implies that

Jim By | [ Fle.c)apo)| - /H B0 [F (2. 0)] = Egs [F ().
Since this is true for any bounded continuous function on ¥ x X we get that the sequence of
tagged point processes {%NWB} N converges to m, but the large deviation principle implies
that if {Py s}n converges the limit must be a minimizer of Fg.

The fact that the point process Sineg itself minimizes F3 among stationary point processes
of intensity 1 is then an easy consequence by scaling. O

b. The Ginibre process

In dimension d = 2, little is known about the asymptotic behaviour of the Gibbsian point
processes except for the particular value 8 = 2. Again, we let Py 3 be the push-forward of Py 3
by the map (x1,...,zN) — Zfil O/ N,

The following was proven by Ginibre |[Gin65| (see also e.g. [HKPV09])

Proposition 2.4.3 (Ginibre). The point process Py g for B =2 and V(z) = |z|?/2 is determi-
nantal with kernel

1 gl +irg 2 N (@)

!

KN (.T, y) =
=0
and has a limit Ging (called the Ginibre point process) which is the determinantal point process
on R? with kernel

1
Keo(a,y) = Lol =3ty

More recently Ging has been identified as the limit of Py g for a wider class of potentials V'
— still at inverse temperature § = 2 — in [AHM11}, Proposition 7.4.]. The convergence is proven
for any potential V' of class C*° (satisfying the growth conditions ) such that AV(0) =
using a determinantal expression of Py g.

The large deviation principle of Theorem [J] together with translation-invariance properties
of the Ginibre ensemble imply Corollary

We will rely on the following translation-invariance property, whose proof we postpone to

Section 2.8.4]

Lemma 2.4.4. Let k > 0 and f in Locy - see definition near (2.2.30). For all e > 0, all integer
n >0 and all u, € R? such that Cy U (u, + Cr) C B(0,/(1 — E)n) we have

Ep,,[f] — Ep,,[f(0u,)] = (exp —%n ) asn — oo (2.4.11)

uniformly on the choice of u,,.
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We may now give a proof of Corollary
Proof. Let F be a bounded continuous function in Locg(&X'). We have

1

—_— E F(0,-C)| dx. 2.4.12
TN BOE) PN,2[ (a: )] ( )

Eny, | [ FO)dP@.0)| -
Let us denote by Ay . the set
Ay. = {z € B(0,VN),(C, UCy +2) C B(0,1/(1 —&)N)}.

Since k is fixed, we have [Ay.| ~ 7(1 —¢)N as N — oo and since F is bounded we have

1

N /B<o,m)
From Lemma 2.4.4] we have

Ep,, [F(6s-C) dr— — [ Epy,[F(6,-C) du

L = 0(e). (2.4.13)

Epy., [F(6; -C) = By, [F] + Olexp(~ 5-N)

uniformly for x € Ay, so that

1

[ Bey B0, -0) dr = (- )Bp, ,[F(O)] + o1).
Q0 AN

But we know (from Proposition [2.4.3) that Ep, ,[F(C)] converges to Eqin,[F'(C)]. Hence we

have
lim — / Ep,, [F(6s-C)] dz = (1 - £)Ecin, [F(C)). (2.4.14)
AN

N—oo T

Combining (2.4.12)), (2.4.13)), (2.4.14]) and letting ¢ — 0 we obtain

lim Eq,, [ / F(C) dP(:c,C)] — Bam, [F(C)] (2.4.15)
N—o0 ’

for all continuous bounded local functions F'. By Lemma [2.2.5 we know that local functions are
dense in Lip;(X), hence is valid for any Lipschitz function F. This implies that Py o
converges to Ging, but the Large Deviation Principle of Theorem |§| implies that if Py o has a
limit it must be a minimizer of F5. ]

2.5 Screening and regularization

In this section we enter the core of the proof, i.e. we describe important ingredients for the
proof of Proposition [2.1.7] which rely on previous work, in particular the screening procedure
introduced in [SS12,[SS15b,[RS15,{PS15]. The goal of this section is to introduce two operations
on point configurations (say, in a given hypercube Cr) which we may roughly describe this way:

1. The screening procedure @5 takes “good” (also called “screenable”) configurations and
replace them by “better” configurations which are well-balanced (the number of points
matches the volume) and for which there is a corresponding electric field supported in
Cgr with controlled energy. If the screening procedure encounters a “bad” configurations,
it replaces it by “standard” configurations (at the cost of a loss of information).

2. The regularization procedure ®'°® takes a configuration and separates all the pair of
points which are closer than a certain threshold .
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2.5.1 The screening procedure

When we get to the next section, we will want to construct point configurations by elemen-
tary blocks (hyperrectangles) and compute their energy additively in these blocks. One of the
technical tricks borrowed from the original works above is that this may be done by gluing to-
gether electric fields whose normal components agree on the boundaries. More precisely, assume
that space is partitioned into hyperrectangles K € K. We would like to construct a vector field
Fi in each K such that

(2.5.1)

—div (JyEk) = cas (Ck — pyy0ga) in K x RF
Ex-7=0 on O(K x RF)

(where 77 is the outer unit normal to K) for some discrete set of points Cx C K, and with

| liEF
X

well controlled (recall the definition (2.2.19)). Integrating the relation (2.5.1)), we see that a
compatibility condition must be satisfied in order for this equation to be solvable, i.e. that

/K dc — /K dul, (2.5.2)

in particular the partition must be made so that [,  duy are integers.

When solving ED, we may take Fi to be a gradient, but we do not require it. Once
the relations @ are satisfied on each K, we may paste together the vector fields Fx into
a unique vector field F, and the discrete sets of points Cx into a configuration C. By
the cardinality of C will be equal to fRd du,, which is exactly N. We will thus have obtained a
configuration of N points, whose energy we will try to evaluate. The important fact is that the
enforcement of the boundary condition Ex - ¥ = 0 on each boundary ensures that

—div ([y["E) = cas (C — piy0ga) in R

holds globally. Indeed, a vector field which is discontinuous across an interface has a distri-
butional divergence concentrated on the interface equal to the jump of the normal derivative,
i.e. here there is no extra divergence created across these interfaces. Even if the Fx’s were
gradients, the global E is in general no longer a gradient. This does not matter however, since
the energy of the true electric field VH generated by the configuration C (and the background
— 4y 0ra) is necessarily smaller than that of E as seen in Lemma This way

WVH/ 2< / TWE 2
HAZE D Y AT C0N

and the energy has indeed become additive over the cells. This shows that to compute the
wy (recall ) associated with the configuration of N points C, we may indeed relax the
gradient constraint and evaluate the energy of the electric fields Ex constructed in each K. This
explains why we need to find ways of obtaining vector fields Fx satisfying .

These vector fields will themselves be constructed from a given point configuration in each
cell K, sampled at random via the law Qu g and two cases will occur. The first case occurs
when the configuration in the cell K has an energy which is not too large, this “not too large
energy"' will be characterized by the fact that there exists a vector field F in the cell K such
that —idiv (ly|"E) + py 0ga coincides with the configuration of points (i.e. the first equation
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in is verified, but not necessarily the second), and whose [, |y[7|E|? is not too large (in
a way that will be specified below). Such configurations will be called “screenable". Indeed, for
them, the result of [PS15| ensures that we may modify the configuration in a thin layer near
0K, and modify the vector field E a little bit as well, so that is satisfied, and that the
energy has not been changed very much. The second case is the case where there exists no such
FE of reasonable energy in the cell K. In that case the configuration is not screenable in the cell
K, we will completely discard it and replace it by an artificial (frozen) configuration (typically
a perturbation of a periodic one) whose energy is well controlled, but which has nothing to do
with the original configuration. This will not matter in the end, because we will be able to show
that such bad cells are rare for a typical configuration.

An important task will be later to estimate the volume in the space of configurations of the
modified configurations that we obtain this way. In fact, what we need to produce above is not
just one configuration, but a family of them whose volume is not too small.

a. A preliminary construction

The first lemma we state below concerns the construction of families of “artificial” config-
urations whose energy is well controlled. This will be used in two different ways: to fill up an
empty space with points during the screening procedure, and also in the next section in order
to replace “bad configurations” for which the screening procedure fails to apply.

Lemma 2.5.1. Let 0 < m < m be fized, K be a hyperrectangle with sidelengths in [R,2R]. There
exists g > 0 depending only on d,m,m such that the following holds : let  be a measurable
function on K satisfying m < p <m and such that ng , := fK w is an integer, then there exists
a family ®8" (K, 1) of configurations with ng,, points in K such that for any C&" in ®8 (K, p),
the following holds :

1. The distance between two points of C&" and between a point of C&" and 0K is bounded
below by ng.

2. There exists B8 satisfying

(2.5.3)

div (|y|’yEgen) = Cd,s (Cgen - MéRd) in K x RF
Est -7 =0 on 0K x RF

and for any n < no,

| P BEE = s g
X

d+1—~

1
< O+ CR¥ = ml ey + € (i ugm)? REF = m iy (2:5.4)

with a constant C' depending only on d,m, m.

3. The volume of ®&"(K, 1) is bounded below by
Leb @ (B0, 1)) > (g ) O™ (2.5.5)
with a constant C' depending only on d,m, m.

We postpone the proof of Lemma 2.5.1] to Section 2.8
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b. The screening result

We now state the screening result from [PS15|, in a version rephrased for our needs. As
mentioned above this result serves to modify a given electric vector field and the underlying
point configuration, in such a way as to satisfy . We call this “screening” because the
configuration is modified in such a way that the field generated by the cell can be taken to be
zero outside of the cell, i.e. the configuration has no influence outside the cell.

The configuration and the field will only be modified in a thin layer near the boundary of a
hyperrectangle K, and remain unchanged in an interior set denoted Old. To be accurate, we do
not really need the original configuration to be defined in the whole K, but only in a subcube
Cr C K, the configuration is then completed by hand until the whole K is covered with points.
We also need the positions of the points added “by hand" in the layer near the boundary, which
will be denoted New, to be flexible enough to have a nonzero volume of associated configurations
in phase space. This is accomplished by letting the points move in small balls around their basic
positions, which does not alter the estimates.

Proposition 2.5.2 (Screening). Let m,m > 0 be fized.

There exists Ry > 0 universal, no > 0 depending only on d and m, there exists a constant C
depending on d, s, m,m such that the following holds.

Let 0 < e < % and 0 < n < ng be fixred. Let Cr be a hypercube of sidelength R for some
R > 0 and let K be a hyperrectangle such that Cr C K. Let u be a measurable function on
K satisfying m < p < m and such that fK,u is an integer. Let m = fK,u. Let C be a point
configuration in Cp.

Assume that E is a vector field defined in Cr x R¥ and satisfies

—div (|y|"E) = €4 (C — pdga) in Cr.
Letting E,, be associated to E as in (2.2.19), we define

1
Miy = 1 [ Py
" R Jop - rR !

and in the case k =1

1
€e.R = —H57 Iy!'y\E\Z,
: et R Crx(R\(—3£2R,3e2R))
and we assume the following inequalities are satisfied
Ry CRoM oMy k=0
R > max (207 OBRW) . R>{ =T " e . if k= '
€ € max(CRoM\' ™ e™ 0 RoeT7el/{ ) ifk=1
(2.5.6)
Then there exists a (measurable) family q)zf;’R(C, w) of point configurations in K and a partition
of K as Old U New with
Int. := {x € Cg,dist(z,0Cr)} > 2¢R} C Old (2.5.7)

SCr
enR

1. The configurations C and C5" coincide on Old.
2. Forn < g, it holds that

> g(zi — zj) = > 9(zi — zj),

T Fx;€C3T |z —x ;| <21 i #x;€C, |z —xi|<2n

such that for any C5 in (C, p) we have
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i.e. the contribution to the energy due to pairs of points which are 2n-close is left un-
changed. Moreover we have

min dist(z, 0K) > ng (2.5.8)
xelscr
min |z —y| > no. (2.5.9)

rEC5*NNew, yeCser
3. There exists a vector field E5* € LY (R¥F RI+KY) satisfying

(a)

—div ([yE5") = cg s (B5 — pbga)  in K x RF
ESCT. =0 on OK x RF (2.5.10)
In particular the configuration C5* has exactly |[ K M points in K.
(b) Letting E;°" be associated to E5 as in (2.2.19) we have:
/ Wy B P < T+ 114111 (2.5.11)
K xRk

with

I= </ . |?J|7|En|2> (1+Ce)+ Cyg(n) ((1 + MRm)ng + K| - ’CR’) + Cee peRY
CRXR

IT = CR™ (| = m [ oo
IIT =~1-11

for some constant C' depending only on s,d, m,m.

SCr

Moreover the number of points of C3°" in New is a constant NNew ON SR

(C,p) and we have

Leb®™er (®X73(C, 1)) > (nveu )l (2.5.12)
for a certain constant ¢ > 0 depending only on d,m, where @Zcz’gew denotes the restriction of
the configurations to the subset New C K.

Proof. The statement is based on a re-writing of [PS15, Proposition 6.1.] provided by a careful
examination of its proof. First, let us assume that ¢ = 1. In that case we may apply directly
[PS15, Proposition 6.1]. For the reader’s convenience let us sketch that proof.

The first step is to find by a mean-value argument a good boundary, that is the boundary of
a hypercube Old included in Cg and containing Int., on which [ |y|7|E,|? is not too large, more
precisely controlled in terms of Mg ,. In the case where k£ = 1, i.e. the interaction potential is
not coulombic and we need to use the extension representation, cf. Section [2.2.3] then we need
to do the same “vertically" i.e. find by mean value a good height z such that fOIdX{_Z’Z} || Ey|?
is controlled in terms of e. g.

The configuration C and the field E are kept unchanged inside Old. We then tile New :=
K\Old by small hypercubes of sidelength O(1) (and uniformly bounded below) and place one
point near the center of each of these hypercubes (they may be chosen freely in a small ball
near the center), see Figure This way the new points are well separated by construction,
and the distances between two points (of the configurations) in New or between a point (of the
configuration) in New and a point (of the configuration) in Old is bounded below by 2n9. In
particular if 7 < 19 no new 27n-close pair has been created and property 2) holds.

We then construct a global electric field on New as described at the beginning of the section
by pasting together vector fields defined on each hypercube. For the global vector field to satisfy
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.
. . .
.
.

2 CR
K

Figure 2.1 — The original configuration (on the left) and the screened configuration (on the
right). The dashed line corresponds to the good boundary. Proportions are distorted and Int.
really contains most of the set K.

the relation , we need the normal components to be continuous (and not necessarily 0)
across the interfaces. These normal components are chosen to agree with that of £ on 00ld
and to be 0 on OK. As explained at the beginning of this section, the energy of the new electric
field E*° is then bounded by the energy of F in Old, plus the energy of the new E in all the
added hypercubes of K\Old. In [PS15|, the construction is made for K and dCg at distance
proportional to eR from each other. We may apply the result of [PS15| for such a K’, and if
OK is further away from Cg, then it suffices to tile K\ K’ and paste vector fields constructed
exactly as in the proof of Lemma In the end we obtain a global vector field E5¢" satisfying
item 3 (a). The energy due to the part K\ K’ is controlled just as in Lemma by a constant
times the number of points added there, i.e. C(|K|— |K'|) < C(]K|— |CRrl|). More precisely, we
may write

/(K\K) Rk(!yIVIEZ“IQ —cas9(n) < C(|K| —|CRr).
") x

The energy in K’ is proven in [PS15] to be controlled in terms of M, r and e g as follows (taking
n =n'in [PS15, Proposition 6.1])

[ i < ( / ry|V|En|2> (1+Ce) + Cylm)(1 + Mpy)R' + CeopeR?,
K' xRk Crx|-R,R

Combining the two relations, we obtain

/ [ B 2 < ( / |y|'Y|En|2> (1+Ce)
K xRk Crx[-R,R
+ Cg(n)(1 + Mg,)eR® + Ce. e R+ Cg(n)(|K| — |Crl), (2.5.13)

where C' depends only on d, s.

For each of the hypercubes in New, we may move the point placed therein by a small distance
C = I without affecting the conclusions, as done in the proof of Lemma or as explained
in [PS15, Remark 6.7]. This way we obtain a set of configurations (and associated electric
fields) satisfying all the requirements and whose nyew-dimensional volume is bounded below as

in (2.5.12).
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To conclude the proof, there remains to handle the fact that u, in our setting, is not equal
to 1 but may vary between m and m. We start by treating the case where ; = m is a constant
function. We may then apply the scaling map o, as defined in to the electric field F.
By a change of variables, letting E’ := 0, E, we get

—s/d d
ﬁmwg%ﬁzms/ﬂ, [y Byf? = RUMg,

/WLl/d(KRX[R,R]k Rx[fR’R]k

and
/ B = R
ml/d(Kpx (R\(-3¢%,5¢2)))

i.e. with obvious notation Mg ,(E) = mHs/del/dR’ml/dn(E’) and e. p(F) = mHS/deE’ml/dR(E’).
If the constant C is chosen large enough (depending on m,m, d, s) we see that inequalities (2.5.6))
imply that the assumptions (6.2) of [PS15, Proposition 6.1] are satisfied by E’ with R replaced
by m'/?R, n replaced by m!/%). We may then apply the result of [PS15, Proposition 6.1], i.e.
what we have just outlined and get a family of configurations such that the desired conclusions
are satisfied, up to a global scaling of all sets and distances by a factor m!/¢. In particular in

view of (2.5.13)) we control the energy by

y’YESCr’ 2§ / y’yEl 2 1+C€
/ml/de]Rk| | | ml/d77| le/dRX[—ml/dR,ml/dR]k| ‘ | ml/dr,]| ( )

+ C’g(ml/dn)(l + mflfs/dMRm(E))ade + Cmflfs/desyRde + C’mg(ml/dn)(|K\ —|CRl)

We then apply the inverse map o,,-1 to this family of configurations and associated electric
fields, and we obtain a family of configurations satisfying all the results of the proposition with
i replaced by m and for the energy bound

/ MW$W§</ mmmﬁa+c@
K xRk Crx[-R,R]*
T CglmVn) (¥ 4+ m~ M (E))emB + Ceo gRE + Cml**/4g(mY/ay)(| K| — |Cal)

thus in view of the exact form of g, (2.1.3) or (2.1.1)—(2.1.2)), we obtain in all cases

/‘ WPW?P§</ wmaﬁ>u+ca
K xRk Crx[-R,R]*
+ Cg(n)(1 + Mpy(E))eR? + Cec R + Cg(n)(|K| — |Cr|)

with a constant C' which may now depend on m, . To get from a constant background pu to a
variable p we proceed as in the proof of Lemma [2.5.1] using Lemma We obtain a family
of configurations satisfying the desired conclusions. O

Let us now estimate how this procedure changes the volume of a set of configurations in
phase-space.

Lemma 2.5.3. Let Int. be as in (2.5.7) and Ext; := Cr\Int.. Assume A is a (measurable) set
of point configurations in X(Cr) such that each configuration of A has n points in Cr and nint
points in Int., with n;, satisfying

(2.5.14)
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where ¢ is the constant in (2.5.12). Let us also assume that (C,p) satisfies the conditions of
Proposition [2.5.2 for all C in A. Then we have

log Leb®" .1 ( L & n(C, N)) > log Leb®"(A)
CeA

Cc

MK, —Nint
+log ((nK,,L )| (|Ext|) ) + (ngp — n)log [Exte]. (2.5.15)
g

Proof. Using the terminology of Proposition [2.5.2] we may partition A into
n
A= Unﬁéizo (AlnNew)

according to the number of points nye, that are created in K\Cg and in a thin layer (of width
~ eR) close to 9Cg. We denote by A|nyeyw the subset of A consisting of configurations for which
NNew PoINts are created.

We note that following the construction of Proposition [2.5.2] the number of points in Old
(points which remain unchanged) is given by nk ,, — nnew by definition of nyew. By construction
again, we have Int. C Old which yields

Ning < NK u — NNew-

Thus for each configuration in A|nyew, when applying the construction, a number ng , — NNew
of points are left untouched while the other ones i.e. n — (ng,, — nNew) points (all belonging
to Ext.), are deleted and replaced by new points (up to permutation of indices) which live in
some small balls in K. We may thus write, using

Leb®" (AnNew ) (NNew ) l¢™New

|Ext, |7 (nxu—nNew)

Leb®mK.n U % p(C, 1)
Ce(AlnNew)

X
But we have seen that nnew < nx,,—nint, while one may check that z — ! (@) is decreasing

|Exte|
2c

as long as ¢ < , SO we may write

Leb®n () @7 p(C.p0)
CeAlnNew
c

MK, u—Nint
> Leb®" (Alnxey ) |Ext.| s ((nKu - nim)!) .
’ |Ext.|

Summing over nnew and taking the log yields the result. O

c. Screenability

The conditions borrowed from [PS15] and which are sufficient for the screening result
Proposition to hold, provide (up to a condition on the number of points) the definition of
“screenability”, whose meaning we explained at the beginning of the section. Our main concern
is then to prove the upper semi-continuity of the screening procedure, which forces us to go into
its topological details.

Let 0 < m,m < +o0o be fixed, let 79 be as in Lemma [2.5.2] (it depends only on d and m).
For any R, M,e,e > 0 such that the following inequalities are satisfied

1/2 .
R > max Ry CRM R> Cgl&]\i‘f[ﬂ if k=0
20 3 )7 1/(1—) .2 T /=)y i1
2 € max(CRyM Ve 1= | RpeT-7e ) ifk=1

(2.5.16)
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with the constants C, Ry as in , and for any 0 < n < nqg, for any configuration of points
C in Cr and any bounded func‘mon uon Cr we define oflfn@j(c ) as the set of vector fields E
such that

—div (Jy|"F) = ¢4, (C — poga) in Cr

and such that )

— [y, 2 < M (2.5.17)
R4 /cRx[R,R]k !
and in addition, in the case k =1,

1

— " |E)? <e. (2.5.18)
e'Rd /cRx(R\(;EZR,;e'ZR))

The set (’)]}\{[;’f (C, ) is defined in the same way except that the inequalities (2.5.17)), (2.5.18])
are taken to be strict.
We will denote by Or(C, i) the set of vector fields E in Cr such that

—div ([y["E) = ca,s (C — pdga) in Cr
without any condition on the energy.

Definition 2.5.4 (Screenability). We denote by Sj\{[nei (resp. SR ) the set of screenable
couples (C, ) i.e. such that

1. O%nei(c 1) (resp. OMG&(C w)) is not empty.

2. The number of points of C in Cgr is bounded above by

N(0,R) < MR? resp. N(0,R) < MR (2.5.19)

M.ee

In the following we see Sp "7 as embedded into the product space X(CRr) x L*(CR) endowed

with the natural topology.

Remark 2.5.5. The condition (2.5.19) on the number of points is closed (resp. open for the
second one) because C — N (0, R)(C) is continuous on X(CR).

It is clear by definition that we have
Sh C Spocs € Spoec. (2.5.20)

Definition 2.5.6. For any (C,u) € Slg/lnej we define Fgf’s to be the “best screenable energy”

e, 1 e
e 0 [ g I PO
-

We extend the function F e’E by zero on the complement ofSé/[ e_i so that FM page F]]%w,,i]€7€1$]\/l,e,s .
K Ryn7+

Remark 2.5.7. It is easy to see that for any (C,u) and any E in Or(C, p),

1. If (2.5.18)) holds then

Mea 1 / 2
C, ) < min y|7|Enl*, M ] .
Rn ( (Rd Crx[—R, ]k’ ‘ ‘ 77‘

2. If (2.5.18)) fails to hold then
M,e,z—:
(Cop) <M.
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Indeed, we note that we always have I’ I]%V{ 7’76’6 (C, ) < M: either (C,u) € Sg{;ﬁﬁ, in which case

M,ee
R.n,+
M, or (C,u) ¢ Sé/[nej in which case Fé‘{,f’e(c, ) is defined to be 0. To prove the statements of

the remark, it thus suffices to verify that if 77 fCRx[—R,R]k ly["|Ep|? < M then F}Q{;f"f(c,u) <

any element of O (C, ) gives a test vector-field for F}]g ;]e’E(C, w) whose energy is less than

SM,e,E

Rn,+ and

ﬁ fcRX[iR Rt ly[Y|E,|%. But this is clear since in that case the configuration is in

FE is a test vector field for F}gﬁe’g.

Lemma 2.5.8. The set Sé/‘[nej (resp. Si‘{lnef) is closed (resp. open) in X(CR) x L*(Cg), and

the function F%f’s is upper semi-continuous on X(Cr) x L>®(CR).

For that we need a lemma which proves the continuity of the energy, say the local one, with

respect to the background density p and with respect to the points.

Lemma 2.5.9. Let R > 0 and let C,C’ be two configurations and p, ' be two bounded measurable
functions on Cg as above. Let E be the electric field generated by the algebraic difference of (C, 1)
and (C',u') i.e.

E:=cyVg* (C—C — (u—p')oga) . (2.5.21)

Then for any n > 0 the energy fCRx[—R RI* ly|7|Ey|? tends to O when (C', ') converges to (C, )
m X(CR) X LOO(CR)

Proof. We recall that by Remark letting g, (z) = min(g(z), g(n)) we have
Ey=Vgy*(C—C) = Vg ((n—p)dga).

To prove the result it suffices to prove that letting Hy := g, * (C — C’) and Hy := g * ((p —
1 )1cy0ga), both fCRx[—R,R]k ly["|VH;y|? and fCRx[—R,R]k ly[7|V Hs|? tend to 0 as (C', ') con-
verges to (C, u) in X(Cr) x L*°(Cg). But the number of points in C is locally constant for the
topology on X (Cg), so we may assume that the distribution C — C’ is compactly supported and
with total mass 0. Therefore Hy (resp. VH1) decays like |#| 57! (resp. like |z|7572) as |z| — oo
as noticed in the proof of Lemma Integrating by parts we may thus write

Lo o1emi = [ g, - (e -¢)wie - e

and the desired result for H; follows by continuity of g,. For Hj, we first notice that by
integrability of g we have
|Ha| < Cllp = 'l o (cp) (2.5.22)

where the constant C' depends on R, and that
—div (ly|"VHz) = 4,5 (b — 1) 1o Ope

in view of (2.2.11]). Let then x be a smooth compactly supported positive function equal to 1
in Cr x [—R, R], and such that |Vx| < 1. Integrating by parts, we have

/ Cly[|VHs > = — / x2div (|y| "V Ha) Hy — 2 / XVx - VHs|y|" Hy
RdJrk Rd+k Rd+k

/ X*Ha (g — p')dpa
Rd+k

< Cd,s

+/ XV X[ | Ha [V Hy).
Rd+k
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From([2.5.22)) we may thus write, using the Cauchy-Schwarz inequality,

1 1

2 2
[ el VP < Clam s Cllasle= ([ P ivml)” ([ 9Pl
Rd+k Rd+E Rd+k

therefore
/ ly|"|VHy|? < / Clyl[VHy|* < Cllp — [0 + e — 1|70,
Crx|-R,R]* Rd+k

with C depending on R. This completes the proof. O

Proof of Lemma[2.5.8. Let us first prove the upper semi-continuity of F Mee. Let (C,p) in
SMea be fixed and for any (C’,x') in SR % such that C'(Cg) = C(CR) (i.e. C’ and C have the
same number of points in Cg), let E be the vector field defined in 1’ By definition of

Sg[ ei and FMe ¢, for any J > 0 we may find an electric field F in (’) “%(C, p) such that

1
R J e x(—R,R*
Then E' := E° + E satisfies

M.
Y17 Eql? < Fr, o (Cop) + 6.

—div ([y|"E") = cqs (C' — p'0ga) in Cg.

In view of Lemma we easily deduce that if (C’, i') is sufficiently close to (C, ) in X (Cg) x
L>°(CR), then
1
Rd/ | B |? < FRhee(Cop) + 29, (2.5.23)
rX[-R,RJ*

and F’ is in O?%A;[’Q_G’E(C’ ,i') provided § > 0 was small enough. In particular we have found a
test vector-field E’ which is in (’)g\g’i@’g (C’, ') and satisfies (2.5.23) hence by definition of Fi' )

we have
Fily (€ ) < PRt =(Copn) +26

£

if (C', i) is close enough to (C, p). Taking § arbitrarily small this ensures that Fp ) Mes i upper
. . . M,ee
semi-continuous at any point (C,p) in Si 7.
Following the same line of reasoning, together with Remark we obtain that SME Ci
open in X(Cg) x L>®(Cg). On the other hand the fact that Sg’e’j is closed is a consequence of

Lemma [2.3.6| together with Remark [2.5.5 This in turn ensures that FM66 = Féu;767€].SM,e,a is
bl R7n,+

upper semi-continuous at any point.

The next lemma shows that tagged point process P of finite energy have good properties:
most configurations under P are “screenable” in the sense of Section their energies are
controlled by that of P and the truncation errors due to close pairs of p01nt§ are small. These
controls are then extended to point processes in small balls B(P,v) around P. In the following
when a couple (z,C) is fixed the implicit background measure is py (z) i.e.

M, Me, M, M,
(2,C) € Sy /Spay <= (Conv (@) € Spyt /Sy
Lemma 2.5.10. Let P be a tagged point process in Ps(X x X) such that W, (P) is finite. Then
we have
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1. For n > 0 small enough and any e,e > 0,

li li inf SM,e,s -1 d li li inf 9 SM&E =1
M iy o il QSRpy) =1and |l iy -l QSkraS)

where M, R — oo in such a way that the conditions (2.5.16)) are satisfied.
2. For any n,e,e > 0,

limsup limsup  sup / (ng’g(c, uy(x)) — cd,suv(x)g(n)) dQ(z,C)
M,R—oc0 v—=0 QeB(Pyw)

<W,, (P)+Cn'z". (2.5.24)

3. For any n,7, with0 <7 <n?/2< 1, any x € R%, any R > 0

I2T) b (W () — 1))

=
( 2 9(lp - q!))] > =0. (2.5.25)
p#q€CNCR,7<|p—q|<n?/2

Note that we cannot directly extend (2.5.25) to a small ball around P because functions like
C + (N(z,7)% —1)4(C) are not bounded.

n—0 T—0

lim sup lim sup (

1
+ 2iEp

Proof. As a consequence of Lemma [2.2.12| and (2.2.33)) we know that since W, (P) is finite we
may find a tagged random electric field P in P (E x LP (R4, Rd+k)) such that

loc

Vr € %, Conf,, o#PUcs = B* W, (PU<) <W,, (P),

where Conf,,, (I)#Pelec’x denotes the push-forward of P°* by Conf
view of Lemma we have for all R > 0

1 pHelec YAy ( pelec,x
/ (Rd / k’leEnI?—cd,sw(m)g(n)) AP (z, E) = ][E Wy (P d

CrXxR

wy(z)- By stationarity, in

and by Markov’s inequality we see that for any M, R > 0 we have for n small enough

5 1 Wy (P) + cas9(n)
pelec | — NEf? > M) < - SEALS 2.5.26
(Rd/cRka\yllnl_ >_ s (2520
On the other hand we have P®**“-almost surely
lim ly|"|E,* =0

R—00 /oy x(R\(—£2R,e2R))*
which in turn implies, by stationarity (Lemma again) that for any e > 0
1

e

R—o00 RA /CRX(R\(€2R,€2R))k !

Finally from Lemma|2.3.10| we see that Ep [A(0, R)?] < CR*! with a constant C' depending
only on P hence by Markov’s inequality we have

P (N(0,R) > MRY) < % (2.5.28)
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uniformly on R. )
Combining (25.26), ([2:5.27) and (2.5.28) yields that limas g P(Sj,5) = 1 and also, in

view of m limps 00 (S]]\%Jn”) = 1. Let us emphasize that although we do not need to
satisfy the conditions (2.5.16]), we may require them to be satisfied. Since S “° is open, 1 gMes

R'qf

is lower semi-continuous, hence

lim  inf Q(SY:ef) > p(SMes
v—=0QeB(Pw) Q( R’n’i) o ( R’n’i)
and the first item of the lemma follows using again (2.5.20) to handle QS Mye D).
To prove the second point, according to Lemma [2.2.12| and ([2.2.33)) we may consider for any
§ > 0 a random tagged electric field P*1*%9 in P, (E X LfOC(RdJ“k, Rd+k)> such that

Vo € X, Conf,, o #P" = PT, W, (P?) <W,, (P)+4.
For n > 0 small enough, we get with Lemma [2.3.4]
][E Wi (PE9) g < W, (Pleed) 1 O0na”. (2.5.29)
We still have for any R > 0, by stationarity,

1 _ —~
/ d/ 1By > = caspv (w)g(n) | AP (2, E) :][ Wy (P d
R CrxR by

< W (PP0) 4 O3 < W, (P) + 6+ Cn'="

where we have used Lemma [2.3.4] Using Remark we see that

1 _
/FM“dP</<Rd/ - |yME77]2> AP (1, F)

+M]3elec,5 / |y|7’En|2 >el.
Rd x (RF\(—e2R,e2R))

Together with (the analogue of) (2.5.27)) and the upper semi-continuity of FMe ° the last two
relations yield the second item of the lemma, taking 6 — 0, and R — oo in 1)
that

We turn to the third item: for > 0 and 7 < n?/2 we have by Lemma

Loy + ¢ (g(fj PBAIV (0,7~ 1)) + By L > ale- qr>] )

#qeCNC1,7<|p—q|<n?/2
T/ belec,d dos
SWMV(PGQC )+Cn 2

and NV(0,7) can be replaced by N(x,7) for any x € R? and C; by an average over Cg, by
stationarity of P (cf. Lemma [2.2.8)). Letting n — 0 gives the result. U

2.5.2 Regularization of point configurations

The singularity of the interaction kernel g has been dealt with via the truncation procedure
at the level n, which renormalizes the energy by truncating the short distance interactions. As
n — 0 the truncated energy converges for any configuration to the renormalized energy wy (cf
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(2.2.22))). However to prove the Large Deviation Principle we need to have a wuniform control
on the error made by truncating. This is what allows us to obtain a conclusion of the type
of Varadhan’s Integral Lemma (e.g. [DZ10, Theorem 4.3.1.]). Note that this difficulty already
appears for example in [BG99| at the leading order of the LDP. In view of Lemma to
control the truncation, we need to control pairs of n-close points. We will do this in two steps:
by separating points by a minimum distance 7 with 7 < 7?/2 and then by estimating the
interaction of pairs of points whose distance is between 7 and 1 via Lemma Let us
note that since the screening procedure already erases “bad” (non-screenable) configurations
and replace them by configurations for which there is no pair of points at distance < 7 we only
need to apply this regularization to screenable configurations.

a. The regularization procedure

When [ > 0 is fixed, for any i € {Z% by “the hypercube of center i’ we mean the closed
hypercube of sidelength [ of center i and whose edges are parallel to the axes of Z%, and we
identify such a hypercube with its center. If ielz%and r > 0 we let again N (Z, r) denote the
number of points in the hypercube of sidelength r» > 0 centered at i

The purpose of the following lemma is to “regularize” a point configuration by spacing out
the points that are too close to each other, while remaining close to the original configuration.
This operation generates a certain volume of configurations C™8 (“reg” as “regularized”) for
which we control the contribution of the energy due to pair of close points.

Lemma 2.5.11. For any 7 € (0,1) and any hyperrectangle K whose sidelengths are in [R,2R]

there exists a measurable multivalued function CD:?% mapping X (K) into the set of subsets of

X(K) such that any configuration C*& in @:‘?%(C) has the same number of points as C and
satisfies

1. The distance to the original configuration goes to zero when 7 — 0 (uniformly on C**8)

sup{dx(C,C™®) | €' € B5(C)} — 0.

2. For any finite configuration C and any C**® € @;?%(C) we have for any n > 87

> gz — ;) < Co(r)( X (M@ 120)2(0) - 1)

R +
xi#x; €CTe8 |z —x4|<n ie6rZd

+ Z g(wi — xj))

xi#x;€C,r<|z;—x;|<2n

where C' is a universal constant (depending only on d).

8. For any integer nk and any set A of configurations with nyx points, we have:

log Leb®”K( U <I>f:]g%(C)> > log Leb®"x (A) — C][ > N(i,67)(C) log N (7, 67)(C)
CeA Ced icerza
(2.5.30)
where C' is a universal constant (depending only on d).

Proof. Definition of the regularization procedure.
For any 7 > 0 and C € X(K) we consider two categories of hypercubes in 67Z :
— S;(C) is the set of hypercubes i € 677Z% such that C has at most one point in 7 and no
point in the adjacent hypercubes.
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— T;(C) is the set of the hypercubes that are not in S;(C) and that contain at least one
point of C.

We define ¢, (C) to be the following configuration: the points of C that belong to some hypercube
of S-(C) are left unchanged, whereas for any i € T,(C) we replace the configuration C N by
a well-separated configuration in a smaller hypercube. More precisely we consider the lattice
3N (Z, 67)*1/ 477 translated so that the origin coincides with the point i € 67Z% and place
N (;, 67) points on this lattice in such a way that they are all contained in the hypercube of
sidelength 37 and center i (a simple argument of volume shows that this is indeed possible,
the precise way of disposing points is not important - it is easy to see that one may do it in a
measurable fashion). This defines a measurable function ¢ g : X(K) — X(K) (see Figure [2.2).

Eaa

Ji

C ©(C)

Figure 2.2 — Effect of the regularization. On the right are shown the smaller hypercubes in
which the new configurations are created for ¢ € T (C).

We then define @if%(c ) to be the set of configurations that are obtained from C the following
way: the points of C that belong to some hypercube of S;(C) are left unchanged and for any
i € T-(C) we allow the points of ¢, z(C) N4 to move arbitrarily (and independently) within a
radius N (Z, 67')_1/ dr. We claim that @;elg{ has the three desired properties.

A. Distance estimate. ’

The first claim of the lemma is easy to check: since for any C™® € @;?%(C) the configurations C
and C™8 have the same number of points in every hypercube of 67Z¢ it implies that every point of
C is moved by a distance at most O(7) (with a constant depending only on the dimension) which
in view of the definition (2.2.29) of dx yields dx(C,C*®) = O(7) uniformly for C*® € & *%(C)
(it really depends only on the number of points of C in K). 7

B. Truncation estimate.

To prove the second point let us distinguish three types of pairs of points x;,z; € C™ which
might satisfy |z; — ;| < n:

1. The pairs of points x;, x; belonging to some hypercube of T-(C).
2. The pairs of points z;, z; belonging to two adjacent hypercubes of T>(C).

3. The pairs of points x;,x; such that |z; — x;| < n but neither of the two previous cases
holds.

To bound the contributions of the first type of pairs, let us observe that in any hypercube
i € T;(C) the sum of pairwise interactions is bounded above by

S g(mi—x5) < Cg(r)(N(7,67)%(C) — 1)+ (2.5.31)

TiFT ecreeng
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Indeed by construction the point configuration C™® in a hypercube ieT, (C) consists in a subset
of the lattice 3N (;, 67)" /477 where each point has been allowed to move within a ball of
radius N (7,67) Y%7, The minimal distance between points is hence at least 2/ (7, 67) /%7 and
moreover a simple combinatorial argument shows that for each point of C™® in this hypercube
i there is O(r*1) other points at distance rA/(7, 67)~1/%7 hence we have

R O(N(z,(i'r)l/d) .
Z g(z; —xj) = N(3,67) O (/2 g(TN(i,GT)—l/dT)Td_ldT> ,

T, FT ecreeny

which in turn yields (2.5.31] l since the sum is obviously zero when N(i,67) = 1.

For the second type of pairs, let us denote by ZT o the set of 7 € Z% whose coordinates belong
to {0,1} and by n- the number of points in i+ iy where i € 127Z%. We notice that the points
x; and z; belong to the same hypercube in either 1277Z% or one of the translates 127Z% + 67ig for
some ig € Zr0. Observing that the distance between the points in C**® which belong to different
hypercubes is bounded below by 67, we find that the total contribution of the second type of

pairs is bounded by
Z Z 7, 27‘ zo )+'
zo €20 ie12rzd

z271

We may simplify the previous expression by extending the size of the hypercube in which we
count the points and bound the total contribution of the second type of pairs by

- 2 .
Co(r) 35 (WE12n*cC)-1),
1€67Z4
Finally the contribution of the third type of pairs is easily bounded by
Z Cg(xl - :Ej)a
xi,x;€C,T< |z —x | <n+8T

indeed any such two points live in non-adjacent hypercubes hence were at distance |z; —z;| > 127
in C and their distance is at worst reduced by 87 during the regularization (then one discusses
according to whether g is logarithmic or satisfies )

C. Volume loss estimate.
Finally we turn to the volume consideration. The fibers of Qf% have a simple description: we

have ®7°%(C) = ®%,(C’) only if C'Ni = CNi for i € S-(C) and N (i,67)(C’) = N (i,67)(C) for
i T-(C) (these conditions are sufficient once symmetrized with respect to the roles of C and

C'). For a given configuration C in K with N points this describes a submanifold of (R%)" of
co-dimension #S5-(C). The volume of a fiber is bounded by

Z N(;a 67) |! (Td>ZZETT<C)N(i ,67)

i€l (C)

whereas the volume of ®7°%(C) is given by

. N(@@67)d
i,67) |! _—
2. Nom Hc) (N(i,67)1/d>

i€l (C) ieTx(

which after taking the logarithm yields the volume comparison of equation (2.5.30)). O

2. Another way of seeing (2.5.31) is to recall that according to the “first-order” results (2.1.5) the minimal
energy of N points in a fixed compact set grows as N2 and (2.5.31)) follows by scaling.
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b. Effect on the energy

We argue that the regularization procedure at scale 7 has a negligible influence on the
screened energy e.g. for configurations obtained by the screening procedure of Proposition [2.5.2]

Let K and p, C satisfying the assumptions in Proposition and let ®Z7 r(C, 1) be the set

of configurations generated by the screening procedure of Proposition [2.5.2] For any C°¢" in

2% r(C, 1) let E5 be the corresponding screened vector field (2.5.10). Let ®"(C*") be the

set of configurations generated by the regularization procedure applied to C5*. The following
holds

Lemma 2.5.12. For any C™® in ®7%(C5") there exists a vector field E*® € Ly (RTTF RHHF)
satisfying
1.

(2.5.32)

—div (Jy| E™8) = cq s (C* — pudpa) in K x R¥
Ers .7 =0 on OK x R¥,

2. Letting E;® be associated to E™® as in (2.2.19) we have

/ ly|"| EfE)? < / B ) (14 0r(1)) (2.5.33)
K xRk K xRk

where the error term o,(1) goes to zero as T — 0, depending only on 1 and R.

Proof. Let gN" be the unique solution with mean zero to

—div (Jy["VgNen) = ¢y ¢ (50 — ﬁcﬂgd) in K x RF
VgNer. 7 =0 on 0K x Rk,

and let grlfe“ be the truncated kernel at scale n as above. For any C° in o, r(C, ) and any

C*®® in @;?%(CS“) let us consider the vector field E generated by the difference C™& — €5 with
Neumann boundary conditions on 0K

B(z) = / VgNeu(z — p)(C*E — C)(p).

Since the regularization procedure preserves the number of points, it is clear that E*8 := E5"+F
satisfies ([2.5.32]). To bound its energy we proceed as in the proof of Lemma and it is enough
to bound [grsa |y|7|Ey|* by a or(1). Integrating by parts we are left to bound

// gy (= ) (CTF — C) (2)(C™ — ) (y).

By construction there is no point of C3 or C™# closer than some constant 7y > 0 to 0K, and
gyeu is uniformly continuous at distance > ng from 0K. Moreover there is the same number of
points in C**® and C5, this number is at most C||u||oo R, and the minimal connection distance
between the points of C5¢" and C*®® is then bounded by C||u||oo R%T because each point of C" has
been moved by a distance at most C during the regularization (see Item 1 of Lemma .

We may then bound

// gz = y)(C8 — ) (2)(C™8 — C*)(y) = O(7)

with a O(7) depending only on R, d, ||¢||, but independent of C*& and C5¢. O
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2.5.3 Conclusion

We may now combine the previous ingredients to accomplish the program stated at the
beginning of the section.

For any point configuration C in X(CFg), any hyperrectangle K containing Cr and any
bounded measure p on K such that ng , := [ p is an integer we define a family omod(C p, K)
(depending on the other parameters 7, e, M, R, 7) of point configurations which are contained in
K and have ng , points the following way :

1. If (C, ) is screenable i.e. is in S R ”+ then we let ®™°4(C, 1) be the image by @;‘f]g% of the

family 3% r(C, i) of point configurations in K obtained by applying Proposition W
to any electric field E € O%’\f)&e(c , i) such that

1 / 2 M1,
—i Yy |Ep|® < Fr ) ®(Cop) + €
R J e x[-R,R)* K R

By Proposition together with Lemma [2.5.12] to any of these point configurations is
associated a screened and regqularized electric field whose energy is bounded in terms of

ﬁ meka ly|"| E,|?, hence in terms of FM’l’E(C,,u) + e asin (2.5.11) and (2.5.33).

2. If (C,u) is not in SM;71’€ then we let ®m°4(C, u, K) be the family of configurations
O (K, 1) defined in Lemma [2.5.1] By the conclusions of Lemma to any of these
point configurations is assoc1ated an electric field whose energy is bounded as in
and which vanishes outside K.

Let us evaluate the effect of this operation on the volume of configurations i.e. we compare
the volume of a certain set of configurations in C'r with the volume of the resulting configurations
after applying ®™°4. We distinguish between the cases of a set of screenable configurations and
a set of non-screenable configurations.

Lemma 2.5.13. Let R, K, i be as above. Assume A is a (measurable) set of point configurations
in X(CR) such that each configuration of A has n points in Cr and niy, points in Int..

1. If (C,p) is in SR’ Y€ for all C € A and (2.5.14 ([2.5.14) holds then

log Leb®"x ( U pmed (e, u)) > log Leb®"(A)
CeA
c
|Ext.

NK,u—Nint
+log | (nxu — Mint)! ( |> + (nk,, — n) log |Ext.|

—C][ > N 127)log N (3, 127).  (2.5.34)
CeA

2. If (C, ) is not in SRn+ for all C € A then

log Leb®"# (U omd(C p, K)) > log Leb®" (4)+log ((nicu!C™<#| R ™) . (2.5.35)
CeA

Proof. The bound :2.5.34) follows from combining (2.5.15|) with (2.5.30)) whereas ([2.5.35|) follows
directly from (2.5.5: . O
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2.6 Construction of configurations

This section is devoted to the proof of Proposition by expliciting a set of compatible
configurations with a large enough asymptotic (logarithmic) volume. To do so, we follow the
strategy initiated in the previous section, i.e. first partition (some subset of) R? into hyperrect-
angles K such that [’ x My is an integer (here and in the following we mostly deal with quantities
defined at the blown-up scale N/ 4). Each hyperrectangle K will contain a hypercube translate
of Cr such that |K| — |Cg| is small and each hypercube will contain a point configuration. We
want the global configurations (when considering all hyperrectangles together) to approximate
(after averaging over translations) a given tagged point process P. To do so, we will draw
the point configurations in each hypercube jointly at random according to a (slightly modified)
Poisson point process, and standard large deviations results will allow us to show that the cor-
rect ones end up occupying enough volume in phase space i.e. that sufficiently many of the
(averaged) point configurations ressemble P.

Then these configurations drawn “abstractly” at random using Sanov’s theorem are modified
as described in the previous section by screening-then-regularizing the parts for which it is
possible to do so, and replacing the “bad” parts by “standard” configurations constructed by
hand. This will allow to eventually obtain a global configuration with N points whose energy
can be computed additively with respect to the hyperrectangles. At each step we need to check
that the transformations imposed to the configurations do not alter much their phase-space
volume, their energy, and keep them close to the given tagged process P.

One of the additional technical difficulties is that the density of the equilibrium measure py
is in general not bounded from below near the boundary 9% and that its support 3 cannot be
exactly tiled by hyperrectangles. To deal with this, we follow the construction made in [PS15]
which consists in removing a thin layer near the boundary, and in placing in that layer some
“frozen configuration" constructed by hand where the points are only free to move within small
balls. We will later have to show again that the contributions to the energy and to the volume
of this thin layer are negligible.

In the following we always assume that P is a stationary tagged point processes with finite
energy W, (P) (otherwise Proposition reduces to Proposition .

2.6.1 Subdividing the domain

We start the construction as in [PS15| Section 7] : we divide the domain between a neigh-
borhood of the boundary, where the density is not bounded below and which must be treated
“by hand”, and a large interior. We recall that 3 is the support of the equilibrium measure
py. We let X' = NY/4% (which depends on N) be its blown-up and i, (z') = py (N~/%') the
blow-up of the equilibrium measure, and recall that its density is bounded above by m.

For convenience we recall the construction of [PS15, Section 7]. For ¢ > 0 we define the
tubular neighborhood of 9% and its boundary to be

¥ = {x e Y dist(z,0%) > t} Iy ={z €Y dist(z,0%) = t}.

Since (2.2.5) holds, Ty is C*! for t < ¢, small enough.
Pick 1 > m > 0 a small number. By assumption (2.2.7)), if & > 0 in that assumption, rescaling
by NV if dist(x, 0%') > ]Z%/;ml/a where ¢; is the constant in (2.2.7), then pf,(x) > m. Thus

1
we may find

N1/d N N1/d
T=T(N)e m"*, =7

e m'/* + el (2.6.1)
=1 =1
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for a constant ¢ depending on m, such that : N(T') := pi,(X}) € N, and pf, > m in ¥/.. We
note that we may have taken m small enough so that T' < ¢, and

W10 < 2191 (9Y) = O(N“T) forall t < T. (2.6.2)

If @ = 0 in assumption ([2.2.7)) then i, is bounded below by a positive constant on its support and
we simply take 7' = 0 (of course (2.6.2) holds also in this case). By (2.6.1) the quantity N~1/4T

tends to 2~ as N — oo. In the following we let ry, 1= S/, 5, 1= {z € X, dist(x, 0%) > rp}

= %
and ¥/ = {z € ¥/, dist(z,0%') > NVr,,}.
In the region ¥/, we have the lower bound pf, > m and there is no degeneracy. We now tile
¥/, by hypercubes whose size is large but independent of N. The next lemma is a straightforward
modification of [SS15b, Lemma 6.5].

Lemma 2.6.1 (Tiling the interior of the domain). There exists a constant Cy > 0 depending
on m,m such that, given any R > 1, there exists for any N € N* a collection Ky of closed
hyperrectangles in X, with disjoint interiors, whose sidelengths are between R and R + Cy/R,
and which are such that

{x € 37 :d(z,057) > CoR} C | K =i, (2.6.3)
Kekn

VK € Ky, /u’VEN.
K

Moreover, an inspection of the proof allows us to observe that the hyperrectangles have their axes
parallel to those of RY.

Let us enumerate the elements of Ky as Ki,..., Kpy , where my g is the number of hy-
perrectangles in [Cn. For any hyperrectangle K; in Ky we denote by z; the center of K; and by
C; the closed hypercube of sidelength R contained in K; whose center is 2; and whose axes are
parallel to those of K;, we also let N; := |, K, py, (which is an integer by construction). Since puy,
is bounded above by m and below by m on ¥, and since K; has its sidelengths in [R, R+ Cy/R]
we have

C1R? < N; < CyR? (2.6.4)
with constants C1,Cy > 0 depending only on m,m. For any hypercube C; we denote
Int.; == {z € C; | dist(z,dC;) > 2¢R%}

as defined in ([2.5.7) and by Ext.; its complement in C;. We denote by N (resp. Nint) the
function “number of points of a configuration in C;” (resp. in Int. ;).

In the following lemma we collect some useful estimates about the quantities related to the
tiling.

Lemma 2.6.2. We have for any R >0 :

1. R
A dim —my g = [Tl (2.6.5)
More precisely we have
R4 9
~MN,R = [Em[(1+ 0N00(1)) (1 + Or—soe(R77)). (2.6.6)

N
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|K;| = R4+ O(RY72) (2.6.7)
N; = Rl (25) + on 00 (1) R 4+ O(RY2) (2.6.8)

where O(RY2) depends only on m,m.

|Ext. ;| = RY1 — (1 —2¢)%) = 2deR? 4+ O(¢*)R? (2.6.9)
where the O(g2) depends only on e.

Proof. From (2.6.3) we see that |X/, —3 .| is bounded by [{z € ¥/, dist(z, 0¥}.) < CoR}|. From
(2.6.2)) we see that

1

{z € ¥, dist(z, 05) < CoR} = O(RN“T) = o(|Sh )
because || is of order N. This implies
: ~ wnen — OQ. .0.
S|~ %] when N 2.6.10

By construction the my, r hyperrectangles partition ¥, and have sidelengths in [R, R+ Cy/R)|
hence the following holds

C d
my rRY < |8 < myr <R+ B?) : (2.6.11)

in particular

myrR = || (1 +OR00 (R‘Q)) :
Moreover we have from ({2.6.1)) and by definition

pyi Z;
i B = = 2612

The three relations (2.6.10)), (2.6.11)), (2.6.12) easily yield (2.6.5) and (2.6.6).
The bound (2.6.7)) holds because by construction the sidelengths of K; are between R and

R + Cy/R with a constant Cjy depending only on m). To get we use the fact that
|Ki| = R*+O(R*?) and from the Hélder condition (2.2.6) we see that [[u, () — pi, ()] Lo (k)
tends to 0 as N — oo (depending only on the size of K;, hence on R and m).

The bound follows immediately from the definitions.

O]

From now on, until Section we work only in X , defined in (2.6.3)), which we recall is a

int
disjoint union of hyperrectangles (see Figure where the region in grey corresponds to X, ).

2.6.2 Generating approximating microstates

This step is devoted to presenting an argument in the spirit of Sanov’s theorem in order
to generate “abstractly” a whole family of point configurations in Xf, whose continuous and
discrete averages over translations are close to some fixed tagged point process. The proof of
Lemma [2.6.3] follows the same line as the proof of Proposition [2.1.6] and is given in Section [2.7]
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O(Nl/d

Figure 2.3 — The tiling of ¥'.

For any P in Py(X x X) we let Pm be the tagged point process induced by restricting the
“tag” coordinates to ¥, C X i.e.

_ 1 _
== P%dzx.

= Bl s,

Since |¥ — %,,| — 0 as m — 0, if F is a measurable function on ¥ x X such that F is L'(P),

then

/Fde—>/FdP asm— 0

and this convergence is uniform for F' € Lip; (X x X'). This also implies that for any r > 0 we
have

B(Py,,7/2) C B(P,r) C B(Py,2r)
for m small enough (depending on r).
The following lemma says that the discrete space average as well as the continuum space

average of randomly chosen configurations occupy a volume in B (P, €) which is given by the
entropy of P. We will prove it in Section together with Proposition

Lemma 2.6.3. Let (Cy,..., CmN,R) be my r independent Poisson point processes of intensity 1
on each hypercube C; conditioned so that the total number of points is equal to

MN,R

Nint := py (Sie) = Y N (2.6.13)
=1

We define My g as the law of the following random variable in ¥, x X

| TR
O n— .
MN,R z:zl (N=/4z;,6,-Cs)

Moreover let C be the point process obtained as the union of the point processes C; i.e.

MN.R

C .= Z C;
i=1

as a sum of random measures, and let us define 9/1T\IN7R as the law of the random wvariable in
Y X X
1
N|Zm| b 5(N71/d$79x'c)dx'
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Let us denote by 15@73 the law induced by Pm in the hypercube CR, i.e. the push-forward of Pm
by the map (x,C) — (z,C N CR). Finally let

— v (Em) log v (Em) v (Em)

T T Tl Y Bl [l
Then for any P € Ps1(X x X) the following inequality holds :

— 1.

.. 1 .. .
lim inf —d lim lim inf
R—oo R%v—0 N—oo my,R

log My r(B(Ppr,v)) > —][ ent[P*|IIYdz — 74y m,  (2.6.14)
Xm

moreover, for any § > 0 we have

P S
lim inf e lim lim inf
R—oo R% v—0 N—oo MN,R

log(M 1, M. ) (B(Pon,,v) X B(P,0))

> —][ ent[P*|TIYdz — 74y m  (2.6.15)
b

m

where by (me’R,D/J\IN’R) we denote the joint law of My and My (with the natural coupling).

2.6.3 Regularizing and screening microstates

In this subsection we take the approximating microstates introduced in Lemma [2.6.3| and
apply to them the screening-then-regularization procedure described in Section [2.5.3]
We obtain the following (recall Niy is defined in (2.6.13))) :

Lemma 2.6.4. Let P € Ps1(Xx X). Given 61,n,¢, M, R, 7,v, N positive with (2.5.6) satisfied,
there exists a set (depending on the parameters) A™°Y of point configurations in X!, which are
of the form C™°d = ZQ\{’R crmod where C°4 s a configuration in K; and such that the following
holds :

1. For any C™ in A™°d if n is small enough, € small enough, R, M large enough satisfying
(2.5.16)), 7,v small enough and N large enough then

1 _ 35
|E/m’ Em 5(N—1/dx,91-cm0d)d$ c B(Pm, T) (2616)
2.
lim lim lim lim li ! ( > ( )) 0. (2.6.17)
im lim lim lim lim sup  — g(xi —z;) | =0. .6.
n—0 M,R—o0 7T—=0v—0 N—oco Cmod g gmod N xﬁéxj eCmOd,\xiij <n
3. For any C™°d € A™° there exists an electric field E™°4 satisfying
; v pmody _ mod __ ,/ ; /
div (‘y| E ) Cd,s (C /’LV(s]Rd) mn Elnt (2618)
Emod. =0 on 0¥,
and
1 _
lim sup —— ]y|7|E;n°d\2—/F}]¥’1’5de <0. (26.19)
e—0,M,R—00,7,v—0,N—00 |Eint| Zgnthk o -
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4. There is a good volume of such microstates

.. .. .. .. 1 LebNim mod Dz |71l
liminf liminf lim inf lim inf log : (A ) > — ent[ P*|TII"]
€0 R,M—oo T,v—0 N—oo Nipt |22 ¢ | Vint

m

— |1 Zn|Tuy m- (2.6.20)

Proof. Let P E Ps1(X x X) of finite energy and d; > 0 be given (as in the statement of
Proposition [2.1.7). For any ¢ and v, let us write the conditions for a point configuration C :=

G

1 _
Al o, O(N-1/dz9,.c)d% € B(Pm,0) (2.6.21)
and
MN,R
MR > Sz 0,,¢) € B(Pmpsv). (2.6.22)
=1

By Lemma we know that given N, R, d,v there exists a set A*" (“abs” as “abstract”
because we generate them abstractly - and not by hand - using Sanov theorem as explained in
the previous section) of configurations C2P5 = sz\lj ®cabs (understood of a sum of measures)

with Njy points, where C?bs is a point configuration in the hypercube C;, such that

Leb/int
m RRd) int

({c™* € A4, [@:6.21) and ([26.22) hold})

lim inf lim inf lim inf L log
R—oo v—0 N—oo mNRRd (

z—][ ent[PY[TT'] — 1y m- (2.6.23)

To see how Lemma yields it suffices to note that the law of the Njy-points point
process C of Lemma [2.6.3] coincides with the law of the point process induced by the Njy-th
product of the normalized Lebesgue measure on U?Z}”R@i, and then gives (12.6.23]).

We let A™°d be the set of configurations obtained after applying the procedure described
in Sectlon n More precisely, for each C?" in A*" we decompose C?P* as ZmNR Cabs where
C2bs is a point configuration in O, and for any i = 1...my g we let ®1°(C3s) be the set of
configurations obtained after screening—then—regularizing Cfbs by the map ®™°4 (in the following,
for good definition, we have to translate back C; and the other quantities by a vector ;)

O4(C) == 00N (Gy, - CF, ply (i + ), O, - K-

We then let ®mod(C2Ps) he the set of global configurations obtained as the product of the
@mod(cabs)
(2

MmN R
(I)mod(cabs) — H @?ﬂod(cabS)
i=1

and A™°d (“mod” as “modified”) is finally defined as the image of AP by pmed,
Let us now check that A™°9 satisfies the properties of items 1 to 4.
a. Dealing with the variation of puy .

Lemma 2.6.5. We have for any N,R,m andi € 1...mynRr

R K
v (zi) = 1y ll oo,y < C (Nl/d) (2.6.24)
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for some k > 0 with a constant C' depending only on d, V and m. In particular for any M' > M
and € > e, for any R,e,n > 0 we have for N large enough (depending on the other parameters
but not on the configuration):

(€ iy (@) € SRt = (€ uly) € SHS, (2.6.25)

moreover if (C;, py () and (Ci, piy,) are in S}g/‘[nej we have

FAS(Cy, i) < FREE (€, iy () (1 + 0(1)) + 0(1) (2.6.26)

where the terms o(1) tend to zero when N — oo depending only on R and m not on the config-
uration C; nor on i =1...myR.

Proof. The bound follows immediatly from the Hoélder assumption on the density
of py and the definition of pf, as the blown-up quantity associated to py. The two controls
(2.6.25) and follow then from Lemma and the fact that they are uniform (inde-
pendent of the configurations) results from the proofs of Lemmas and (the energy
of the “difference electric field” can be expressed in terms of ||uf (z;) — pf/|| and using the
Cauchy-Schwarz inequality together with is enough to conclude). O

An important consequence is the following : if C is a finite configuration whose discrete
average (over translations) is close to P, then most of the configurations in the discrete average
are screenable. Indeed by construction, configurations in A2PS verify and . In
particular, combining Item 1 of Lemma and Lemma [2.6.5] we see that

MmN, R
1

> i/ cony (Srpt) = 1. (2.6.27)
=1

lim lim lim inf
M,R—00 v—0 N—oo Cabsg A2bs M N R

b. Distance to Pm-

To prove the first item of Lemma we claim that the screening-then-regularizing pro-
cedure preserves the closeness of the continuous average to P, (however in general it does not
preserve that of the discrete average). For that purpose we have to distinguish between hyper-
rectangles where the configuration is screenable (where the configuration is only modified in a
thin layer or by moving points by a distance at most 7) and hyperrectangles where it is not
(where the configuration is then completely modified).

Let Cmod = 20 ¢mod he in AMOd (where 4 is the point configuration in the hyperrect-
angle K;), we may find C?" = Z?:{’R Cfbs in A*P% such that equation holds and for any
t=1...mnyR

Crod € 0y, - DPd(C)

i.e. C™°d has been obtained from C*’® by screening-then-regularizing.
We want to show that the continuous average

1
W /E/ 5(N—1/dx’91_0mod)dx eEP(ExX)

satisfies (2.6.16|).
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We claim that we may evaluate the distance between the continuous averages of C*”* and
™ in terms of the distance between the configurations in each hypercube K;:

1 1
dP(ExX) ﬁ - 5(N71/dx79m.6abs)7ﬁ - (5(N—1/dx’9146m0d)
m m m m
MN,R 51
<C Y du, (G, 0m00) + S+ ornoe(l) (26.28)
i=1

for a certain constant C' depending only on ;. The proof of is elementary and we sketch
it below.

First, from the approximation property of Lipschitz functions on X by local functions (see
Lemma Item 3) and the definition of the distance on P(X x X') we see that there
exists k > 0 large enough such that for any tagged point process Q in P(X x X), if Q) denotes
the push-forward of Q by (z,C) + (x,C N Cy) (in other words, the point process induced on
¥ x C), we have

|2

dpzxa) (@, Qr) < — (2.6.29)
This means that when comparing two point processes we can localize the configurations to some
hypercube of fixed size up to a small uniform error and in the following we let k be an integer such
that (2.6.29)) holds. Hence in order to evaluate the distance between the two continuous averages
we may reduce ourselves to evaluate the distance between their projection on P(X x X (Cy)) up
to an error % + % according to (2.6.29)). It amounts to testing the averages against Lipschitz
functions F' € Lip;(X x &) such that F(x,C) = F(z,C N Ck) for any (x,C). The continuous
average (over translates in ¥,,) of such a function F' can be compared to its discrete average
on the hypercubes K; up to an error comparable to the fraction of the volume X! which is at

distance less than k of ¥7,\¥{;. By Lemma we see that this fraction is o(1) as R, N — oo.

int-

Now for any ¢ = 1...myr we want to evaluate dy (g, (C?bS,C{nOd). We denote by 1

the set of indices i = 1...my g such that (C2",u},) is in S%;?l’_f and Iy the set of indices

i = 1...mpy g such that (C?bs,,u’v) is not in Sé/[nlf Let us recall that the distance dy (g,

has been defined in (2.2.28)) by testing against Lipschitz functions which are bounded by 1 in
sup-norm. Consequently if ¢ € I we have

dxqic,y (€1, CPY) < 2|K;| < CR (2.6.30)

which is the maximal distance between two configurations of X' (K;). On the other hand if i € I
we have

dxgicy (€77, €0Y) < 2| K| = [Cal) + 2(|Ci| — [Intl) + CR'T,

where we denote Int.; := {z € C; | dist(z,dC;) > 2¢R%} and C is a constant. This is because
the configurations C2P> and C"°? may differ completely on K;\Int., but in Int the screening
procedure has not modified C2" (according to Item 1 of Proposition and the only modifi-
cation is due to the regularization procedure which moves the points by at most C'7 (and there
are at most C'R? points in Int’). Using (2.6.9) and (2.6.7) we get

dxqicy (€, ¢00) < CRYe + 1) + O(R). (2.6.31)
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Combining (2.6.28)), (2.6.30) and (2.6.31)) we have

1 1
dP(ExX) W . 5(N—1/d$’9x,0abs)ym - 6(N—1/dx,6$~cm0d)
m 'm m m

#1,

T MNR

2 g,

(CRYe +7)+ O(RI2)) +
MN.R

(2.6.32)

Using (2.6.27) we see that #12 = 0( ) and #IlR =1-o0(1) when M,R — oco,v — 0, N — oo

uniformly in A2bs, Combmed Wlth it yields (2.6.16)) when the parameters are sent to
their limit as described in Item 1 of Lemma 2.6.4

c. Truncation error.

We turn to the second item of Lemma [2.6.4] which bounds the truncation error of the con-
figuration that we construct.

Let ¢mod = ZmN n CmOd be in A™°4 and let C#P such that C™°d has been obtained from €2
by screening-then-regularizing. By construction (see (2 in Item 2 of Proposmon in the
case of a screenable configuration and Item 1 of Lemma m in the case of a non—screenable
configuration) we have

min  min dist(z, dK;) > no
i=1.. mNRxecmod
for some 79 > 0 depending only on d, m,m. Therefore if 7 is small enough (depending only on
d, m,m) the only pair of points in Ccmod at distance less than 1 are included in some hyperrect-
angle K;. We denote by I; the set of indices 7 = 1...my g such that (Cabs, wy) is in Sp nl_f and
M,1,e

I5 the set of indices i = 1...my g such that (C2*, u},) is not in Sy,

+
If i € I the conﬁguratlon CmOd is by construction (see Lemma |2 made of points which
are well-separated by the same constant 7y hence there is no pair of pomts at distance less than
n in K; for i € I and for n small enough (depending only on d, m,m).
If i € I; we know by construction that the Only pair of points at distance less than 7 are in

C; (the points in K;\C; are well-separated, see ) We may apply Item 2 of Lemma [2.5.11
to bound the truncation error in C; in terms of the points of Cabs for any n > 87 it holds:

Z g(z; —ij)

zi#x;€CPOY |z —x;|<n

<cg(n) | (X N@1nAE)-1) + 3 g(@i — zj)

- +
1€6724 @ #w; €COPS T< |z —x ;<21

where C' is a universal constant (depending only on d). Since i € I; the condition (2.5.19)) in
the definition of the screenability implies that Cfbs has at most M R? points hence we may also
write the previous equation as

> glai — ;) < Cg(r)( D WE120)2(C™) = 1)4 A MPR)
T FTj EC{“Od,\xi—xﬂgn ierZd

n 3 g(ws — 2;) A MRYg(7)). (2.6.33)

TiFT GCbe,T§|mi—a:j|§2n

This re-writing is only technical, and meant to replace the functions depending on the number of
points by bounded functions, which can now be tested against the convergence of point processes.
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mNR
v i1 O

(which is by assumption included in B(Pp,,v)) we have for any 0,7, with 0 <7 <n?/2 < 1

In view of Item 3 of Lemma [2.5.10} setting Q = ~1/dg, cabs) for any C2Ps € Aabs

2
limsup limsuplimsup  sup [gg_dT)EQ[(/\/'(x, )2 — 1)1 A M?R*]

n—0 7—0 v—0 (Cabsg gabs

+ B ( > g(lp —a)) A MR'(r))] = 0.

p#gECNCR,7<|p—q|<n?/2

In particular both of the expectations must go to zero. Writing Q explicitly, this implies that

MN,R
s 2(pabsy 2 p2d
f fn il i3 o) 3 (G120 1 PR
1ET
+ 3 g(w; — ;) A MR%g(r)) = 0

TiFx; eC;?bS,rg\xij |<2n

which when combined with (2.6.33)) proves (2.6.17)) because the sum on i = 1,...,my r bounds
of course the sum on ¢ € I.

d. Energy.

We want to control the energy of electric fields associated to the configurations in A™°4,

First we associate to any C™°9 € A™°4 3 screened electric field E™°? satisfying (2.6.18). As
explained in Section we know by definition that for C™°4 € A™°d for any i = 1...m N,R
there exists an vector field E™°¢ such that

div ([y|"Brmod) = cq(C°Y — phybga) in K; x RF
Emed. 7 =0 on 0K; x RF

Setting E™d = S, pmedq K, xgrr provides the vector field mentioned in Item 3 of Lemma
which satisfies .

We now turn to bound its energy, refering again to Section Let C?P5 € A2Ps be such
that C™°? is obtained from C*"* after screening/regularizing. We denote again by I; the set of

indices ¢ = 1...my g such that (Cabs, py) is in S%nl_f and I the set of indices ¢ = 1...mnr

abs M717€
such that (C: ,,uv) is not in S

For i € I the energy is bounded as in lb (after screening) and (2.5.33)) (after regular-

ization). For i € I it is bounded as in (2.5.4).
At this point, we insert the information on py, provided by (2.2.6) with (2.2.8)). This ensures

that
wy — ][ 1y
K;

for a constant depending only on uy. Moreover, we have 0 < |K;| — |C| = O(R??) as stated in
2.6.7). Inserting these estimates into the bounds of (2.5.4]) and (2.5.11)), and combining with
2.5.33) in the case 7 € 11 we find

< CRann/d
Loo(K5)

! M,1
Re /E - [yl 1B < ( Y (Fra=(C2, ) + ) (1 + Ce)
int X i€l

+Cg(n)((1+ M)e + or(1)) + Cee + on(1 dZNZg ))(1+0.(1)) (2:6.34)
i€l
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where the term oy (1) tends to 0 as N — oo, keeping the other parameters ﬁxed, or(1) tends to
0 as R — oo independently of the other parameters and o-(1) is as in (2.5.33)).

Using Lemma [2.6.5| together with the upper semi-continuity of F' MT’7 ’ 1 gM.1.e We obtain
R,n,+

limsuplimsuplimsuplimsup ZFM’LE C2Ps (7)) < /llegFR 1‘Ede. (2.6.35)

e—~0 M,R—oo0 T,v—0 N—oco R e, R+

Moreover by (2.6.37) again and N; = O(R?), the term % >ier, Nig(n) is o(my,r) when 7 is
fixed. Let us also recall that my r ~ % (cf. (2.6.5])).
Combining ([2.6.34]) and (2.6.35]) we get (2.6.19)). O

e. Control on the volume loss.

We now wish to bound the volume loss between the set A2PS of microstates generated “ab-
stractly” and the set A™°? of configurations obtained after modification by the screening-and-
regularizing procedure.

For each configuration C?" in A*P* we keep the distinction between i € I and i € I, as
above. From Lemma [2.5.13 we see that the difference of volume between Am°d and A?bs ig
bounded below as follows

log Leb®int (AmOd) — log Leb®int (Aabs)

N t c Ni—N N,
> log - < ) + (N; — N;) log |Ext
][(;abs c Aabs 7,621:1 <( ) |EXt | ) ( ) ‘ £|

0> Y NG, 67)log N (i, 67) + 3 log (NZ-!C’Ni@A_M)dC. (2.6.36)

i€l jeerzd i€l
We note that from ([2.6.27]), we have
1 I
lim lim lim #h_ 1 limsup lim lim #h 0. (2.6.37)
M,R—oov—0N—oco MN R M,R—co V>0 N—oo N R

In order to apply Lemma [2.5.13| however we need to check that the condition (2.5.14)) holds

for i € I i.e. that
|Exte|

2¢ '
is satisfied for any ¢ € I;, which can be achieved by taking ¢ small enough. Indeed we have
N; < CR? with a constant C' depending only on m,m as observed in (2.6.4). Hence up to

changing ¢ in (2.6.36)) into

— Nt < (2.6.38)

¢1 = min(cpe, ¢) (2.6.39)

where ¢y depends only on d, we see that we can always satisfy (2.6.38)).
The integrand in (2.6.36) may be bounded below using Stirling’s estimate as follows

int C1 Ni_/\/iint
> log | (Ni — N™)! + (N; — N;) log | Ext.|

: |Exte|
i€ly
> (Ni = Ni™) log(N; — NJ™) — (N; = Nj™) — (N; = Nj™*) log [Exct.|
€l
+ (N; — N;) log [Ext.| + (N; — Nj™)loger —C' Y N(i,67)log N (7,67) (2.6.40)

ie6rzd
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(with ¢1 as in (2.6.39)) on the one hand, and on the other hand

> log (Ni!CNi ]éﬂ‘Ni) > Nilog N; — N;log |Cy] — N;(1 —log C). (2.6.41)
i€l i€l

We now turn to studying the terms in (2.6.40)), (2.6.41)) which relies on estimating the quantities
N; and At

Let D™ (x,C) be the discrepancy quantity N(C) — uy (z)|Int.|. If i € I; the quantity
D (g;,C;) == N — 1}, (2;)|Int.| is bounded since the uniform bound (2.5.19) on the number
of points holds for ¢ € I;. We may then pass to the limit v — 0 using

lim
v=0mpy, R

]/\/mt ! (2)Int. |

= / D™ (2,C)| dPyy,r(,C)
_][ dm/ ‘Dmt(;p,c)‘ dPj(C). (2.6.42)
The discrepancy estimates of Lemma more precisely , show that
[ o [|omc)|apric) = oqri)

as R — oo with a bound depending only on P. Inserting the previous estimate in (2.6.42) we
obtain that (since s < d)

Z ( e — M’V(%)!Intso = O(R%(CHS)) = o(R%) (2.6.43)

i€lq

. 1
lim
v—0 MN,R

as R — oo with a o(R?) depending only on P. Arguing similarly we also get

lim 2))RY = N; | = O(R*2(@9), 2.6.44
Jm (mN " 16211 MV i ) O( ) ( )
The same also holds for I and using the fact that my r ~ % we get
. _lig—
3%(;}&%&W<M>—WNR“d%- (2.6.45)
112

Next, from ([2.6.8]) and the definition of Int, Ext, we may write
Ni = gty () Inte] + g (@) [Exte] + oxoe (R + O(R2),
hence, in view of (2.6.43) we have in the limit » — 0 (depending on R)

1 3 (Ni =N 1
MN.R 7, |Exte| |Exte|

(o(RY) + onoo(1)R ) +— Z 1 ().

zeh
Since [ py (z) =1 by definition and since from ([2.6.37) we have #I; ~ my g it holds that

ZNV zi) =1+ o(1)

MN.R i€ly
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asm — 0, M, R — oo, v — 0. Moreover when ¢ is fixed and R, N — oo we have by (2.6.9))

Ext,| (o(B?) + on s (1)RY) ) = 0(1).

Finally we get that

- . . . 1
lim lim lim lim lim sup E
m—0e—0 M,R—00 v—0 N—00 o gabs #11 <
1

(N; = NP
|Ext,|

=1+o0(1). (2.6.46)

We may now write using Jensen’s inequality

S (N — ™) log(N; — N™) — (N; — A7™) log [Ext,|

i€ly
1 (Nz _ /\/‘iint) 1 (Nz _ Mint)
= #h|Ext| (#[l Z |Exte| ) to (#I Z |Exte| '

icl Lier

and using (2.6.46)) together with (2.6.5)) and (2.6.9)) we get that

> (N; = Ni™) log(N; — N™) — (N; — Nj™) log [Ext.| > —CeN

i€ly
for some constant C' > 0 depending only on the dimension and P. This settles the first terms
of the right-hand side in (2.6.40)). For the next one, in view of (2.6.44)) we have

: 1 d d

which together with (2.6.8) yields that Y7, (N; —N;) log [Exte| is a o(N) when M, R — oo and
N — oo.
Similarly we may write that

1
#Il i€ly

' 1 1
N; — Ny = — Ni— Np) + NPV = o(RY) + — Y Nt
(V= A = g 0 (N = N+ NP) = ol 2 S

and arguing as above we see that
1

T, > NE < mlExte| + o(RY),

i€l
which together with the choice (2.6.39)) of c; yields that

Z(Ni - ./\/;-i“t)(log c¢1 —1) > —CNelloge|
i€ly

with a constant C' depending only on P, d, 7. Concerning the sum on i € I; we are left to control
the terms Y o a0 N (7,67)log N (i, 67), which are treated as in Section |c} they are uniformly
bounded because of which allows us to take the limit v — 0 and Item 3 of Lemma
together with the trivial bound nlogn < (n? — 1), ensures that

1

MN,R

> > N(i,67)log N (3, 67) = o(1)

i€l je6rd
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as M,R — oo, 7 — 0,v — 0, N — o0.
We now treat the terms for ¢ € I5. In order to control (2.6.41)) we follow the same line as
above. First we decompose the difference as

_ N,
N;log N; — N;log |Ci| = (N; — N;)log R + N; log Rijl'

The sum of (N; — N;)log R? is bounded as above thanks to (2.6.45]) and (2.6.8) which yield
> (N — N;)log R* = o(N) in the limit R — oo, 7 — 0, N — cc.
i€l

On the other hand, the second term is bounded using (2.6.4))

ZNlog > —C#ILR?

i€ly

and with (2.6.37) we finally get that

> Nilog N; — N;log |Ci| = o(N) in the limit M, R — 00,7 — 0, N — co.
i€l
The last term ) ;7 Ni(1 — log C) is easily bounded because N; < CR® and #I, = o(mn,R)
hence
Z Ni(1 —1logC) = o(N).
i€la
Inserting all these controls into (2.6.40), (2.6.41)), using (2.6.5)) and the fact that |X,,| — |X|
as m — 0, we get from (2.6.36)) that

lim inf lim inf lim inf lim inf lim inf lim inf
m—0 e—=0 M,R—oo 7—0 v—0 N-—oo

1 i mo int abs
N (log Leb™ (4m4)) — log Leb™= (A4?*)) > 0. (2.6.47)
Combining (2.6.47)) with (| and we conclude that m holds.

2.6.4 Completing the construction and conclusion

Once the construction has been made in X, there remains to complete it in the thin
layer ¥\X!{ . by placing “frozen” points there. That precise construction was already made
in [PS15, Proposition 7.3, Step 3], where the following is shown :

Lemma 2.6.6. There exists a family A" depending on N, R, n, of point configurations with
N — Nint points in X'\X! . and which satisfy the following.
1. For any C™* in A%, the distance between two points of C™' or between a point of C®Xt
and the O(X'\X!,,) is bounded below by ny > 0 depending only on d and m.

2. For any C™Y in A™Y, there exists a vector field E® ¢ LIOC(Rd+k,Rd+k) such that

—div (Jy"E™") = cqs (CF — py)  in X\Xi
E™t. 7 =0 on O(X\X{,)

3. The vector field E®* described above satisfies

/(E \X! )xRE |y|7’ESXt’2 < C(I%'] = [%iu])- (2.6.48)
! ;nt x
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4. The volume of A" is bounded below the following way:
Leb®(N=Nim) (gext) > CN=Nut) (N — Nyyy)! (2.6.49)

for some C depending only on d,s and m.

We may now finish the proof of Proposition Let P, 01,02 be given as in the statement
of the proposition, and let N,n, R, e be given. Let us consider any configuration C™°9 in DY
and electric field E™°4 provided by Lemma for these parameters, and any configuration
C** and associated electric field E** provided by Lemma We may then consider the total
configuration C* := C™M°d 4 C®<t (the sum is again in the sense of measures) and the total vector
field B := By + E™ gy .

A. Distance to P.

In view of together with the fact that |X/| —|X] | = o(IN) as m — 0 it is easy to conclude
that

1

m . 5(N—1/dx79x,ctot)dx S B(p, 51)7 (2.6.50)

for m small enough, € small enough, M, R large enough, v small enough and N large enough.
To see it we may choose k large enough so that (2.6.29)) holds with % and argue as in the proof
of item 1 : the configurations (6, - C**) N Cy and (6, - C™°4) N Cy coincide on

{fL' € Yint, d (:L" azint) = Ckl/d}

which represents a fraction 1 — o(1) (when R, N — o) of ¥j,, hence of E/m so that

1 - 30
d (’Z/m’ 5 6(N—1/d1.7‘gz,ctot)7p) < TE] + Tl + 0(1)-
To conclude it suffices to observe (see Remark for a precise statement) that since the dif-
ference of volume [X'| —|X/ | = o(N) as m — 0, the continuous averages of a given configuration
over both domains lie at distance o(1) uniformly as m — 0.
B. Energy.
We have
—div (Jy[TE*) = cqs (C* — pf 0ga)  in REFF
{ Bt =0 in R4TF\ (27 x RF).

Moreover from (2.6.19) and (2.6.48)), since |¥'| — |3 ;| = o(IN) as m — 0, we see that the energy
of B! satisfies for any 1 small enough

1 _
lim sup lim sup lim sup lim sup lim sup (/ ly|Y | E*)? — /F]]%Vj’l’edp> <0. (2.6.51)
m—0  e=0 MR—oo 7w—0 N—oo \N|X| Jratk i

Moreover since the points added in ¥\X! , are well-separated from item 1 of Lemma we
keep ([2.6.17)).

Combining Lemma [2.3.13] and (2.6.51) we see that for every point configuration obtained
this way, the associated electric field as in ([2.2.21)) satisfies

. 1
i s [(N [ VR = cagtn)
1n—0,m—0,e—0,M,R—00,7,v—0N —0c0 Rd+k

- [ (F = casgmuy (@) dP| <o
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Using the definition ([2.2.22 - 2.3.2) from Lemmau 2.3.3} the fact that (2.6.17] m ) holds, and ([2.5.24 m
from Lemma [2.5.10| we get that given d1, 62 > 0 we may obtain (2.6.50|) and

wn(C*) < W, (P) + by (2.6.52)

by choosing n small enough, m small enough, ¢ small enough, M, R large enough, v, 7 small
enough and N large enough.

C. Volume.
We are left to bound below the volume of configurations A®™* := {C**} that we have constructed,
and connect this volume with a large enough probability for Q N,3 s in . We may bound
the volume of A" as follows

Leb®N (Atot) < N )Leb@)Nint (Am0d> Leb®(N_Nint) (Aext)

’E’|N Nint ‘E/‘Ni"t ’E/’N—Niﬂt
which yields by taking the log and using (2.6.20)) and ([2.6.49))

1 Leb®V (A%t 1 N Nint s _
—1 > 1 . 1 int] _ j=ding
og 08 | print + ~ log \E’\ /Zm ent[P|II"|dx

N >/ |V - N
— (log |Z] — 2] + )—N(N N log |¥] + — (N Nlm)logc+—1og(N NIt —

with an error r going to zero asn —+ 0,m — 0,e - 0, M, R — oo, 7,v — 0, N — co. The terms
of combinatorial nature may be re-arranged and bounded below by Stirling’s formula
int

N log Nt

1 N
log( ) log(N Nmt)'>logN+N(Nlnt N) —

Moreover we have (N — N log |X/| = (N — N'"*) log N + (N — N'") log |Y|. Let us also observe

that %(Nint — N) =o0(1) and ‘|EX€JI’]T‘ — 1 when m — 0, R — 0o, N — co. We thus have

1 Leb®V (At I
—log———= > — P11 —(log|X]| = 12|+ 1
7 o8~ i > — | ent{PIIIda — (1 2] ~ 2]+ 1

int

+log N — ~ log N™ — (N — N™) log N + o(1).

Since N < N we finally get

1 Leb®V (Atet) S

N ogw > /Eent[Px|H |dz — (log |X| — || + 1) + o(1).
Conclusion. To complete the proof of Proposition we need to link the preceding

construction with a large enough volume of “good” events for Qp g. This is done by conditioning

Qn g into having all N points in ¥, the resulting conditional expectation (after scaling) is equal

in law to 7‘;,?\]]\7 . The probablhty of this event is bounded below by
11m 1n (0] omts 1n (0] .0.

because Qn g is essentially the (N times product of the) normalized Lebesgue measure on w.

More precisely Qu g is the N times product of the measure ﬁ#%’ but we know that ¢ van-

ishes on w and is positive outside w and moreover from (2.4.1)) we know that [ e V@ dy -y,
lw| (see equation (2.7.15)) and the proof of the lower bound after it for more details).
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In view of (2.6.50) and (2.6.52) and using (2.6.53]) we have (with the notations of Proposi-
tion [2.1.7)):

1 _ _ _ _
lim inf — log Qn g (B(P, d1) N TN52(P)> > —/ ent[P?|IT!]dz — (log |S| — |Z] + 1)
N—oco N ’ ’ N
a1 o
—&—l}\g&f N log Q5 (IV points in X))

> —/ ent[P?|IT!dx — (log |w| — 2] + 1),
>

which, in view of (2.1.23)), concludes the proof of Proposition m

2.7 Proof of the LDPs for the reference measure

In this section, we prove Proposition [2.1.6 and Lemma [2.6.3] Proposition 2.1.0]is a “process-
level” (or type 3) LDP, whereas Lemma is closer to a (type 2) Sanov-like large deviation
result.

In order to prove Proposition[2.1.6] we rely on a similar result, Proposition[2.7.5] below proved
in [GZ93] with the Poisson process IT! as reference measure instead of Qy 5. What we have to
do is then to show that the result remains true when perturbing away from the Poisson case,
which will take several steps. The proof of Lemma[2.6.3], on the other hand, relies on the classical
Sanov’s theorem whose adaptation to our setting is very similar to the previous one. We believe
that some (if not all) of these variations around classical results belong to folklore knowledge
but we provide a proof for the sake of completeness.

2.7.1 Two comparison lemmas

We start by introducing some notions that will allow to replace point processes by equivalent
ones.

Definition 2.7.1. Let (X,dx) be a metric space and let {Ry}n and {R\}n be two coupled se-
quences of random variables with value in X, defined on some probability spaces {(Qn, BN, TnN)} N -
For any 6 > 0 we say that {Ry}n and {Ry}n are eventually almost surely (e.a.s.) §-close when
for N large enough we have

7n (dx(Rn, Ry) > 6) = 0.

It two sequences are e.a.s. d-close for any d > 0 we say that they are eventually almost surely
equivalent (e.a.s.e.).

Let us emphasize that being eventually almost surely equivalent is strictly stronger than the
usual convergence in probability. It is also easily seen to be stronger than the classical notion
of “exponential equivalence” (see [DZ10, Section 4.2.2]) and thanks to that, large deviation
principles may be transfered from one sequence to the other.

Lemma 2.7.2. If the sequences {Ry}n and {R/y}n are eventually almost surely equivalent and
an LDP with good rate function holds for { Ry}, then the same LDP holds for {R/y}n-.

Proof. This is a straightforward consequence of [DZ10, Theorem 4.2.13]. O

A first example is given by the averages of a configuration over (translations in) two close
sequences of sets.
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Remark 2.7.3. Let {Vy}n, {Wn}n be two sequences of Borel sets in RY of bounded Lebesgue
measure and let f be a bounded measurable function on X. Then for any configuration C € X
we have

1

- < IWNAVN|
Wi

" f(lz-C)dx — " f(lz-C)dz| < T

[1flloos (2.7.1)

where /\ denotes the symmetric difference between sets. In particular if P is a point process and

limpy 00 %%M = 0, the random variables obtained as the push-forward of P by the maps

1 1
Cr— —— 591.Cd:c and C+— —— (591.cdx
Wil Jwy Vn| Jvy

are eventually almost surely equivalent.

The point (2.7.1)) is straightforward. To get e.a.s. J-closeness it suffices to recall that the
distance between point processes is defined in (2.2.27)) by testing against functions in Lip;(X)
(which are in particular bounded in sup-norm). In a similar spirit we have

Lemma 2.7.4. Let P be a point process in R and {Ax}n be a sequence of Borel sets of R? of
finite Lebesgue measure, such that

VkeN, [{z €Ay, d(z,0Ay) > k}| = o(|Ax]).

In particular the assumption holds when Ay = NYeA where A is a compact set with Lipschitz
boundary.
Let us denote by Ry, resp. Ry the push-forward of P by the map C ﬁ fAN dp,.cdz,

resp. C +— Ilevl fAN 00,-(cnay)dr. Then the sequences {Ry}n and {Ry}n are e.a.s.e.

Proof. Let us observe that the operation of taking the intersection with Ay affects only a small
portion of the translates, indeed we have for any k > 1

(05 -C)NCr = (0 - (CNAN))) N Ck

for all x such that d(x,0AN) > kY. Thus, combining the uniform approximation of functions
in Lip; (X) by bounded local functions as in Lemma and the definition (2.2.27)) of dp(x)
as testing against functions in Lip,(X’) we get that for any § > 0 there exists k > 1 such that

|z € A, d(z,0AN) > k|
[AN|

dp(x)(Rn, Ry) <+ , P-almost surely.

By assumption the second term in the right-hand side is o(1) when N — oo hence Ry, R}y are
e.a.s. 20-close and this holds for any § > 0. O

2.7.2 Continuous average, proof of Proposition m

We now turn to the proof of the large deviation result for Q ~,3 stated in Proposition m
We start by recalling the following fundamental large deviation principle for empirical fields.

Proposition 2.7.5 (Georgii-Zessin). Let {Ax}n be a fired sequence of cubes increasing to R?
and let Ry be the push-forward of TI' by the map

1

C— —
IAN] Jay

d0p,.cdx.

Then {RN}n satisfies a large deviation principle at speed |Ay| with rate function ent[-|TT!].



2.7. PROOF OF THE LDPS FOR THE REFERENCE MEASURE 109

This is a consequence of |GZ93| Theorem 3.1] together with [GZ93, Remark 2.4] to get rid
of the periodization used in their definition of Ry (see also [FO88]). One could also adapt the
method of [RAS09, Chapter 6] from the discrete case (point processes on Z9) to the case of
point processes on RY, where the Gértner-Ellis theorem (see [DZ10, Section 4.5.3]) is used by
establishing the existence of a pressure and studying its Legendre-Fenchel transform. We now
need to extend the result to our setting.

a. Extension to Lipschitz boundaries

In this first step we extend the LDP of Proposition to more general shapes of {An}n.

Lemma 2.7.6. Let A be a compact set of R with a non-empty interior and a Lipschitz boundary,
and let Ay := NY4A. Let Ry be the push-forward of II* by the map

1

C— —
AN Jay

dp,-cdx.

Then {Rn}n satisfies a large deviation principle at speed N|A| with rate function ent[-|[TT'].

Proof. In the following every hypercube is such that its edges are parallel to the axes of R%. Let
N be given. Let us consider the hypercubes centered at the points of AN %Zd and of sidelength
%, and remove those that are centered at points in

1
A, = {x e An=2Z% d(z,0A) < 2cdn_1/d} ,
n
where ¢4 is the distance between the center of the unit hypercube in dimension d and any vertex

of this hypercube. Since the boundary of A is Lipschitz, we have lim, , |4,| = 0, so that
the total volume lost when removing the boundary hypercubes is less than 2~V |A| for n large

enough. In other words, we have found a family of m = m(N) hypercubes {AGY )}?i(lN ) included
in A and such that |A| — | U™, A(i’]\f)| < 27N|A|.
For any N we may then define A(N) as the hypercube of center 0 and such that
AW = 30 AN = A0 > |A] - 27N]A]. (2.72)
i=1

There exists a measurable bijection @y : U, AGN) — AN) which is a translation on each
hypercube A®N) (t=1,...,m).
Next, we let Ry be as before the push-forward of II' by the map C — ﬁ fAN 0p,.cdx and
R!y be the push-forward of IT! by the map
1

Cr ———— dp,.cdz.
Nm|ALN)| U NAAGN)

Finally, from any configuration of points C on UZ2 | N'/4AGN) we get by applying  +— N2 (N~1/4(z))

a configuration in NYV4A®) | which by abusing notation we denote again by ® ~(C). We denote
by R); the push-forward of H‘lAN by:

1
C — ]V’]\(]V)’//;N (59¢N<z),(pN(c)d$.

We impose that the random variables Ry, Ry, R} are coupled together the natural way.
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It is easily seen that the push-forward of HllAN — or more precisely of the process induced
on the subset UL NYV4AGN) — by the map C + ®n(C) is equal in law to IT! yaio- The
sequence of hypercubes { N 1/dp(N )} N satisfies the hypothesis of Proposition hence a Large
Deviation Principle holds at speed |A|N for the sequence {R7 }n (the fact that we consider
the push-forward of H|1AN instead of that of IT' is irrelevant thanks to Lemma [2.7.4). To show
that the same principle holds for { Ry }x it is enough to show that the two sequences are e.a.s.
equivalent in the sense of Definition

Let us first observe that the sequences { Ry } y and { Ry } are e.a.s.e. because as a consequence
of the tiling of Ay by the hypercubes U?llNl/dA(i’N) only misses a o(1) fraction of the
volume of Ay and e.a.s. equivalence is then a consequence of Lemma [2.7.3

As for the pair of sequences { Ry} n and {R} } n, let us observe that for any k£ > 1 we have

(02-C) N Ch = (V@) - DN (C)) N C

for any x in one of the tiling hypercubes U N 1/d\(N) except for the points that are near the
boundary of their hypercube - those such that

d (z,Ur ONYIACND) < | Oy 14,

For any k the fraction of volume of points in the hypercube that are close to the boundary in
the previous sense is negligible as N — co. Arguing as in the proof of Lemma [2.7.4] gives the
result. O

b. Tagged point processes

We now recast the result of Lemma in the context of tagged point processes (as defined
in Section [2.2.4]) which necessitates to replace the specific relative entropy ent by its analogue
with tags.

Lemma 2.7.7. Let A be a compact set of R? with C' boundary and non-empty interior and let
Ry be the push-forward of II' by the map

1
Cr— W/A(s(x’glvl/dm,c)dl‘.

Then {Rn}n satisfies a large deviation principle at speed N with rate function
P / ent[ P?|TT')dz.
A
Proof. Upper bound. Let P be a stationary tagged point process. We claim that

1 _ _ _
lim sup lim sup logIT'(Ry € B(P,¢)) < —/ ent[P*|T1']dz. (2.7.3)
A

e—0 N—oo

Let us observe that the “forgetful” map ¢ : P(A x X) — P(X) obtained by pushing forward the
map (z,C) — C is continuous. This yields

1 _ _ 1 _ _
lim sup lim sup N logII'(Ry € B(P,¢)) < limsup lim sup N log IT* (QD(RN) € B(gp(P),e)) )

e—0 N—oo e—0 N—oo

The definition of ¢ implies that Ry := (Ry) is the push-forward of TI' by the map C
ﬁ fAN dp,.cdr. From Lemma we know that an LDP holds for Ry at speed |A|N with
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rate function ent[-[IT'] (or equivalently at speed N with rate function |Alent[-|[IT']) hence the
right-hand side is bounded by |A|ent[o(P)|TI']. Now let us note that ¢(P) = ﬁ [ P*dx (where

P is the disintegration of P with respect to the first coordinate of ¥ x X and where the integral
is understood in the Gelfand-Pettis sense), but the relative specific entropy is affine hence we
have

ent[p(P)[TT] = |A1| /A ent[P*|IT!] dz

and this shows the upper bound of the lemma.
Lower bound. Let P be a tagged point process. We want to prove that

1 1 — f— —
im inf lim inf — > — | 1Y d. 7.
hrgrgglf]}\r{r;ﬁf N logII'(Ry € B(P,¢)) > /Aent[P |TI" |dx (2.7.4)
For any € > 0 we claim that there exists a covering of A by compact sets Aj,..., Ay C A

of pairwise disjoint interiors such that each set A; has a Lipschitz boundary and such that,
denoting by Rgf,) the push-forward of II' by C ﬁ Sni/aa 591_(cle/dAi)d:U (we impose that

the random variables Ry and Rg\l,), .. .,R%W) are coupled together in the natural way), the

following holds for any § small enough and N large enough:

M . i ) ]
Q {R%) €B <][A P""d@é)} C {RN € B(P’g)}‘ (275)

This is shown by the following successive approximations.

1. By definition of the topology of weak convergence, the ball B(P,¢) contains a certain

open set of the type
N {‘/Fi(a:,C)(dRN — df_’)‘ < 51}
i€l

for a finite family of continuous functions F; € CY(A x X).

2. A standard application of the Stone-Weierstrass theorem implies that each function F;
can be approximated in sup-norm by a finite sum >_; f; jg;; where f; ; are continuous
functions on A and g; ; are continuous functions on X.

3. We may then approximate each f;; by step functions on A with a common partition
{A1,..., Ay} for all functions f; ;. Each set in the partition can be chosen to be either
a hypercube or the intersection of a hypercube with A so that they all have a Lipschitz
boundary. At this point (2.7.5)) is seen to hold for some § > 0 small enough, only with
the random variable R?S;) instead of R%), where R?S;) is the push-forward of IT! by the
map C — le/dAi b9, .cd.

4. We may also approximate each function g; ; by a bounded local function in Loc(X) (as

in Lemma [2.2.5) with the same k for all functions g; ;. This allows us to argue as in

Lemma [2.7.4] to neglect the points that are close to the boundary between two elements
of the partition, hence passing from RES;) to Rg\zf).

Since the Ay, ..., Ay are pairwise disjoint (up to a boundary of zero Lebesgue measure), the
events {RS\Z,) eB (f A, Prdx, 5)} are globally independent so that (2.7.5)) yields

Liogtt! ({y € BP,o)}) = L3 togrr ({R(i) < (][ e 5) }>
N %® N ’ NI ° " A | |



112 CHAPITRE 2. GRANDES DEVIATIONS POUR LES CHAMPS EMPIRIQUES
Moreover, for any ¢ = 1... M, we have

1 1 (i) ][ S _ ][ S5 1
m inf lim in ’Ai|N10gH ({RN €B< AiP dz,5 )% | = —ent AiP d:c]H

lim inf lim inf
= —][ ent {159”]1'[1} dx
A.

7

by the large deviation principle of Lemma and by the fact that ent[|IT!] is affine. This
finally implies that

l}\rfn_)igf%log It ({RN € B(P,e)}) > ﬁ/Az ent {13”3|H1} dr = —/Aent [Pﬂl‘[l} dx

for any € > 0, which implies .

Conclusion. From and we get a weak LDP for the sequence { Ry} y. The full
LDP is obtained by observing that { Ry} n is exponentially tight, a fact for which we only sketch
the (elementary) proof : for any integer M we may find an integer T'(M) large enough such that
a point process has less than T'(M) points in C; expect for a fraction < ﬁ of the configurations,
with Ry-probability bounded below (when N — 00) by 1—e~"M . The union (on N > Ny large
enough) of such events has a large Ry-probability (bounded below by 1 — e~V when N — c0)
and is easily seen to be compact. O

c. From Poisson to Bernoulli

Modification in the lower bound. From Lemma we know that the large deviation
principle of Lemma is still true when restricting the Poisson point process to N1/4A. If
we consider an N-point Bernoulli point process on NY/?A instead of the restriction of a Poisson
point process as the reference measure i.e. if we constrain IT' into having a fixed number of
points in N¥/?A then the LDP is modified. The large deviation upper bound holds but the
large deviation lower bound ceases to be true in general, for the limit point processes might
have large excesses of points with non-negligible probability e.g. in the case of the Poisson point
process itself. Let us recall that we denote by P, 1(A x X)) the set of stationary tagged point
processes (with space coordinate taken in A) such that the integral on x € A of the intensity of
the disintegration measure P* (which is by assumption a stationary point process) is 1.

In what follows, when a set A is fixed if M, N are integers we denote by Bjs,n the Bernoulli
point process with M points in N*/¢A and we let By := By v for any integer N. We want to
prove

Lemma 2.7.8. Let A be a compact set of R? with C* boundary and non-empty interior and let
SN be the push-forward of By by the map

1
Cr NIA| Jyr/ap O(N~—1/dz.9,.0)0%-

Then for any A C Ps(A x X') we have:

_ 1 _
—  inf / ent[P*|TT')dz | — (log |A| — |A| + 1) < lim inf — log Sy (A)
PeAnP, 1 (AxX) JA N—oo N

< lim sup = log Sn(A) < (— inf_/ ent[PﬂHl]da:> — (log |[A| = |A| +1). (2.7.6)
Nooo N PeA Ja
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Let us emphasize that in the lower bound of the infimum is taken on the restriction
ANP, (A x X).

Variations of the domain and the number of points. For M, N integers we denote by
S v, N the push-forward of By, by the map

1
C— W/Aé(x’eNl/dz.C)dx'

Let us observe that S NN = Sy as defined in Lemma m The following lemma allows us to
handle the variations of the number of points.

Lemma 2.7.9. Let L = Ly and M = My be two sequences depending on N with L >

1/d
max(M, N) and let | == limsupy o max(|5 — 1], | (30)""" = 11,12 — 11,2 — 1).
Let P be a stationary tagged point process. The following holds:
lim lim sup = log Sy (B(P 5)) < lim sup 1 log S1. (B(I5 O(l))) +O(1).
N s ) = N )

=0 Nooco N—oo

Proof. The probability of the point process By, having exactly M points in NY/9A is given by
M L—M
(%) 1-— %) ( J\L/[) and conditionally to this event By, induces a point process on N1/4A

which is equal in law to By ny. Moreover it easy to see from the definitions that for any C in
X(NY4A) we have

1 1
d'P(Ll/dAXX) <L|A‘ L1/ap 5(L_1/d$,92-6')d'r’ W N1/an 5(N_1/dw,01-C)dx>
=0 |0/~ 1|+ IN/L 1) =00) (27.7)

Indeed for any F' € Lip;(A x X) we may write

1 1
i F(L=4d . - F(N~Yd :
L|A‘ L1/dA ( 1.7033 C)dx N‘A’ N1/dA ( xjem C)dx
1
- F(L=/4 .C) — F(N~4 :
A Ll/dA( ( 2,0, -C) — F( .0, C)) dz

+ (N‘lA - LylAy) /Nl/dA F(N Yz 6, C)dx. (2.7.8)
We have, for any z € N/4A
[F(L~,0, - C) = F(N"Y92,0, -C)| < C|L™H4 — N=VINYE = ¢ (N/1)"/* 1)
and on the other hand F' is bounded by 1, which together with and the fact that N < L

yields Z7-7)-

Conditioning By, to have exactly M points in N9\ we get

log Sas.n (B(P, 5)) <log S (3(13, 5+ 0(1)))

7N\

Mlog(%) + (L= M)log(1 — ]}j)) (27.9)

By definition of | we have liminfy_oo & (M log(&) + (L — M)log(1 — %)) =0() + o@?
O(l), hence taking the limit N — oco,d — 0 in (2.7.9)) yields the lemma.

I
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We now turn to the proof of Lemma

Proof. In what follows Ry will denote the push-forward of IT! by the map

|N1/dA

1
Cr W /A 5($79N1/d$.c)dl'.

To establish the upper bound of (2.1.24)) it is enough to condition l'I| N1/dA
N points. The conditional expectatlon is then equal in law to By so that

into having exactly

1 _ 1 1 :
NlogRN(A) NlogSN(A) N ogl_I'lNl/dA(N pomts)

_ 1.3 1 nal
Nl gSN(A) + Nloge (N|A|)

1 _
= ~log sN<A> + N(log |A] ~ [A] +1) + on o0 (1)

hence the upper bound of follows from the LDP upper bound of Lemma .

We now turn to the lower bound in . Let us denote by #Ax the number of points
of a configuration in N'/?A and by #0Ax the number of points in a 2-tubular neighborhood of
OAy. Let x be a non-negative smooth function compactly supported in the unit ball of R¢ such
that [ x =1 and let us denote by x the continuous function on X' obtained by testing x against
the point configurations (seen as Radon measures). If C is a point configuration in N'/¢A we
have

1 ) #AN | <#3AN> , (2.7.10)

—_ C)o n- dr = ——
N’A| Nl/dAX( ) (N 1/%,91-6) €L N‘A‘ N‘A‘

Moreover for all P € Pg1(A x X) we have by definition of the intensity [ ¥(C)dP(z,C) = ﬁ It
implies that for all ¢ > 0

lim lim NlogRN( (P,6)>

6—0 N—oo

< lim lim JblogRN({Q B(P,5) | ‘/ C)dQ(z,C) — IAI‘ }) (2.7.11)

d—0 N—oo

We now observe that under a Poisson point process IT' there are at most % points near
the boundary dAn with overwhelming probability :

LTINS 1 })
lim — log IT" > = —o0.
N N 08 ({ NIA| = loglog N >

It means in particular that 1n the right-hand side of m we may neglect the (intersection

with the) event {#1\?|?\1\V > Tog log + } since this event has a logarithmically negligible probability.

We may then neglect the O(# NTAL ) error term in (2.7.10) and replace the right-hand side of
E710) by

#Any 1 ‘ )
— L S IV .
Jim plos f (B ”"””‘\Am a7l =°

In the previous equation and in the rest of the proof we make a slight abuse of notation since
Ry is the push-forward of IT' by a certain map.
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Next, up to replacing € by |Ale let us write this term as

.1 = = #AN
Nim 5y log By <B<P’5> N_l‘ )
M__ 1
N T 1+e
1 . .
:A}gréoﬁlog Z SMN( P(S))HAN(M points in Ay).
——1 €

The previous expression is obtained by applying the law of the total probability with respect to
the possible values of #A y, and observing that the conditional expectation of Ry knowing the
event {#Ax = M} is equal in law to SM’N.

We bound the O(¢N) terms in the sum by their maximum to get

——1+e
1 _ 1 _ _
li | S P,8)) <Ii | log Sy v (B(P, 6
im sup - log MZ MN( (P, )) imsup -log,  max o log M,N( (P, ))

W_l €

1
li log IT} (M points in Ay). (2.7.12
+limsup 5 N e 08 Ay (M points in Ay). ( )

Applying lemma with |% —1|<eand L =N(1+¢) we get

_ 1 _ _
lim lim sup N log S, (B(P,)) < limsup + log St (B(P,0(1))) + o(1), (2.7.13)

=0 N—oco N—oo

where O(1),0(1) hold when € — 0, whereas an elementary computation yields for H}\N

1
hj{fnj;lop N v rrel)a7x’ N1+ log HAN(M points in Ayx) < (log|A] — |[A| +1) +O(e). (2.7.14)

Combining (2.7.12)), (2.7.13)), (2.7.14]), using that L = N(1 + ¢) and letting £ — 0 we obtain

lim lim Nlog Ry ( (P, 5)) < hmmfhmlanSN ( (P, 5)) + (log |A| = |A] +1).

6—0 N—oo 5— N—oo

The lower-bound for Sy is now a consequence of the LDP lower bound obtained for Ry in
Lemma This completes the proof of Lemma O

d. From Bernoulli to le,g

We now wish to extend the large deviation principle to the case of the point process Q N,B»
defined as the push-forward of Qn by iy, cf. (2.1.9) and (2.1.21)). Let us observe that the
probability measure Qn g has a constant density on w!V since by definition ¢ vanishes on w, and
that its (marginal) density tends to zero like exp(—BN(¢(z)) outside w. Hence we expect Qp 5 to
behave like a Bernoulli point process with roughly N points on N 1/dy, (which would correspond
to the case where ( = 400 outside w). We may now turn to proving Proposition m

Proof. Lower bound. The lower bound of (2.1.24] m is obtained by conditioning the points to
all fall inside NY/?%. Denote by #Xy the number of points in N¥/?%, by definition of Qg we
have

=) "
Qn,s ({#Xn=N}) = f e—BNE() 1 )
Rd
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It is easy to deduce using (2.4.1)) that

1 by
N logQn g ({#Xn = N}) =log ||w|| +o(1). (2.7.15)
Conditionally to #Xy = N, the point process generated by Qs is equal in law to an V-
point Bernoulli process in N/ dE hence we have, with the notation Sy of the previous paragraph

(the reference set is now A = X)

1 - 1 - 1
— > S— = .
v 08 5(4) = 7 log Sy (A) — - log Qs ({#XN8 = N})
Using the LDP lower bound for Sy proven in Lemma together with (2.7.15) we get the
lower bound for Qy g.

Upper bound. The law of total probabilities yields (abusing notation as in the proof of
the lower bound of Lemma [2.7.8))

hmsup—logQN[g( ) < hmsupﬁlogZQNg (AN#XN =k)Qng(#EN = k)

Conditionally to #Xy = k the point process generated by Qu g is equal in law to a Bernoulli
point process with k£ < N points in N%/4% and the LDP upper bound of Lemma allows us
to bound each term, so that the upper bound follows from that of Lemma [2.7.8] More precisely
it is easy to see that with overwhelming probability the number of points #X n tends to infinity
as e.g. VN so that we may bound

N
1o Y B s(AN #Dx = K)Q s(#Ew = K
k=0
1 N
N Z Aﬂ#zN—k)QNg(#EN—k>
-

Bounding Qn g(#Xn = k) by 1 and the terms %logQN,g(A N#Xny = k) by %logéNﬁ(A N
#3n = k) and using Lemma we get the result. O

2.7.3 Discrete average, proof of Lemma m

In this section we give the proof of Lemma The line of reasoning is analogous to the
continuous case and we will only sketch the argument. Let us first forget about the condition on
the total number of points (i.e. we consider independent Poisson point processes) and about the
tags (1 e. the coordinate in 3/ ), then there holds for any fixed R a Large Deviation Principle
for EDTN r at speed my g with rate function Ent|[- ]H ] This is a consequence of the classical
Sanov theorem (see [DZ10, Section 6.2]) since in thls case the random variables 0,, - C; are
independent and identically distributed Poisson point processes on each hypercube. Taking the

limit R — oo yields, in view of the asymptotics (2.6.5) on my g and the definition (2.1.12)) of
the specific relative entropy,

1 1
lim liminf l}\r[n inf N log My R(B(Ppjcy,€)) > —ent [Pm\ﬂ } .

R—oo v—0

We may then extend this LDP to the context of tagged point processes by following essentially
the same argument as in the proof of the continuous case.
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We then argue as before in the proof of LDP lower bound for the continuous average in
the Bernoulli case. To condition the point process into having Niyy ~ Npy(X,) points in
¥ . ~ X! modifies the LDP lower bound obtained from Sanov’s theorem by a quantity which

is an adaptation of (2.7.14)) in this setting

log [ e~ NZul (N[ 8 ) Vv )
(NNV(Em))! ’

1
lim su
N%oop N’Zm‘

hence the constant 7, ,, in (2.6.14). This settles the first point of Lemma

The second point follows from the first one by elementary manipulations. The main argument
is that if one knows that a discrete average of large hypercubes is very close to some point process
P, then the continuous average of much smaller hypercubes is also close to P since it can be
re-written using the discrete average up to a small error. More precisely for any fixed § > 0
establishing that a point process is in B(P,d) can be done by testing against local functions in
Locy, for some k large enough (because of the topology on X and the approximation Lemma
2.2.5). For R, N large enough an overwhelming majority of all translates of Cj, by a point in
3!, is included in one of the hypercubes C; (i = 1...my ) (this follows from the definitions

and (2:63)).

For any such local function f € Loc we have

1 1 &
>0 | s f(0,-C) =~ m Z R - f(by - C)dx, (2.7.16)
m 'm ) =1 i

which allows us to pass from the assumption that the discrete average (in the right-hand side of
(2.7.16))) of a configuration is close to P to the fact that the continuous average (in the left-hand
side of ) is close to P. These considerations are easily adapted to the situation of tagged
point processes.

2.8 Additional proofs

We collect here the proofs of various lemmas used in the course of the paper.

2.8.1 Proof of Lemma

The first point (X is a Polish space) is well-known, see e.g. [DVJO08, Proposition 9.1.1V]).
It is easy to see that dy is a well-defined distance (the only point to check is the separation
property). It is also clear that any sequence converging for dy converges for the topology on
X. Conversely, let {u,}n be a sequence in X which converges vaguely to p and let £ > 0.
There exists an integer K such that > ;- 2% < § so we might restrict ourselves to the first K
terms in the series defining dx(un, ). For each k = 1,..., K and for any n, let p,; and puy
be the restriction to the hypercube Cj of each term (and of the limit). For any £ = 1,..., K
the sequence of masses (funx(Ck))r>1 is an integer sequence and up to passing to a common
subsequence by a standard diagonal argument, we may assume that for each k£ the sequence
{ttn 1(Ck) }i>1 is either constant or diverging to +o0o. We may then restrict ourselves to the
terms k for which the sequence is constant = Ni. By compactness we may then assume that
the Nj, points of the configuration converge to some Ny-uple z1...zn, of points in Cj. It is
easy to see that Nj must be equal to u;(Cy) and that the points z ...y, must correspond to
the points of the configuration py. This implies the convergence in the sense of dy. From any
sequence {t, }n which converges weakly to p we may extract a subsequence which converges to
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p in the sense of dy (and the converse is true), which ensures that dy is compatible with the
topology on X.

We now prove the approximation property stated in the third point of Lemma [2.2.5 By
density it is enough to prove the second part of the statement i.e. the (uniform) approximation
of Lipschitz functions by local functions. Let F' be in Lip;(X) and 6 > 0. From the definition
(2.2.29) of dy we see that there exists k such that if two configurations C,C’ coincide on Cy
then dx(C,C") < 5. We let fr := F(C N Ck). By definition f is a local function in Locy, we
have chosen k such that dy(C,C N Cy) < § for any configuration C and since by assumption F'
is 1-Lipschitz we have

[F(C) = f(O)] = [F(C) = F(CNCk)| <dx(C,CNCy) <6,

and k here depends only on J, which concludes the proof of Lemma [2.2.5

2.8.2 Proof of Lemma|2.2.11

Let us denote as in Section by X = (x,%) the coordinates in R x R*¥. We also recall
that v € (—=1,1). Let E; and Es be elements of A, such that Conf,,F; = Conf,,FEs. Then
we have Fy — Ey = Vu where u solves —div (|y|"Vu) = 0. We can also observe that V,u
(where V, denote the vector of derivatives in the x directions only, is also a solution to the
same equation (this should be understood component by component). This is a divergence form
equation with a weight |y|” which belongs to the so-called Muckenhoupt class As. The result
of [FKS82, Theorem 2.3.12] then says that there exists A > 0 such that for 0 < r < R,

1

1/2
W /B(X R) |y‘7|vxu|2> (T/R)Av (2.8.1)
B(X,R) ,

osc(Vgu, B(X,r)) <C (
where osc(u, B(X, 7)) = maxg(x,y u—minp(x ) u. We note that the condition that W(E1) and
W(E3) imply without difficulty that

. 1
lim sup Td /K o ly|?|Vul? < 4o0. (2.8.2)
R

R—o0

Applying to X which belongs to a fixed compact set, and inserting we find that
osc(Vyu, B(X,r)) <C (R_(d+1+7)Rd) 2 (r/R)*
in the case k = 1, and respectively
osc(Vyu, B(X,r)) <C (R_de) 2 (r/R)*

in the case k = 0. In both cases, letting R — 0o, we deduce that osc(V u, B(X,r)) = 0, which
means that V,u is constant on every compact set of R %,

In the case k = 0, this concludes the proof that u is affine, and then E; and E5 differ by a
constant vector.

In the case k = 1, this implies that « is an affine function of z, for each given y. We
may thus write u(z,y) = a(y) - = + b(y). Inserting into the equation div (|y|"Vu) = 0, we find
that 0y (|y|"(d'(y)x + b'(y)) = 0, ie. d(y)z +V(y) = <2) Byt the fact that Jg [y |0 ul? dy

ly[7
C|(ym‘2Y2 dy must be, which implies that ¢(z) = 0 and thus dyu = 0.

This means that u(z,y) = f(z). But then again [ |y|7|Vu|?dy is convergent so we must have
Vf(x) =0 and wu is constant. Thus E; = E3 as claimed.

is convergent implies that [
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In the case k = 1, it follows that W,,,(C) (if it is not infinite) becomes an inf over a singleton,
hence is achieved.
Let us now turn to the case k = 0 (in that case we note that we must have s = d — 2 or

(2.1.2)). Let E € A,, be such that Conf,,E = C and W(F) < oo (if it exists), and let ¢ be a
constant vector in R?, then

][ |Ey + | — measg(n) :][ |Ey|? — measg(n) + |e* + 2¢ ][ E,. (2.8.3)
Kg Kg Kpg
We claim that JEKR E, is bounded independently of n and R. So the right-hand side of is
a quadratic function of ¢, with fixed quadratic coefficients and linear and constant coefficients
which are bounded with respect to R and n. A little bit of convex analysis implies that ¢ —
W(E +c¢) being a limsup (over R and 7) of such functions is strictly convex, coercive and locally
Lipschitz, hence it achieves its minimum for a unique c¢. This means that the infimum defining
W, is a uniquely achieved minimum.

To conclude the proof, we just need to justify that fKR E, is bounded independently of n

and R. We may write
B~ f Bi+f (Vh-vVi)«C
Kg Kg Kg

where f, is as in (2.2.16). Because we are in the case s = d — 2 or (2.1.2), Vf, and V f; are
integrable and we may check that |, kx(Vfi = Vfy) «C is bounded by CC(Kp) where C is

independent of R and n. But since W(F) < oo and E € A,,, we have limp_,, ﬁC(KR) =m
(cf. [PS15, Lemma 2.1]). It follows that

fo B
Kpg

and by almost monotonicity of W (Lemma [2.3.4)) the claim follows.

<C(1+Wi(E)+m)

2.8.3 Proof of Lemma [2.2.12

Let X7 be the image of A; by AXj i.e. the set of point configuration of “mean density” 1 for
which one can define a corresponding electric field. Let C — E(C) be a measurable map from
¢ to LY, (R4TE RITF) guch that for any C we have X1 (E(C)) = C and W(E(C)) = W1(C) (such
a map can be chosen measurable because the set of electric fields E satisfying these conditions
is closed, since it is a singleton according to Lemma .

For any C in A let us define the following sequence of random electric fields

P]g’lgc 2:][ 591-E(C)’
C

We claim that if Wy (C) is finite then the sequence {Pflgc} » is relatively compact in P(LY (RITk RATFY))

loc

for the weak topology on L} (R4 RITF). Indeed for any integer m we have

1 1
/ [/C |y|”|En|2] apps = [ da / o6 ol < /C WPIER  (284)
m k m k+m

and by definition of WW we have

1
lim —— [y Ey)? = Wy (E) + casg(n). (2.8.5)
k—o0 |Ck’ Chy K "

m
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This implies that the sequence { i [ /. Con ]y|7|En|2} dP,f}gC}k is bounded. Arguing as in the proof

of Lemma we get the existence of a limit point for {Pﬁ}gc}k.
Let C — Pelec be a measurable choice of a weak limit point (see e.g. [Coh72]) on the (measur-

able) set {C, Wl( ) is finite}. It is easy to see that Pel is stationary (since we average 6, - E(C)
on large hypercubes), concentrated on A;. Moreover in view of (2.8.4 - - we have

W () = i | [/C yIE, ﬂd CE°(E) — casg(n)

:/Uo | E, \2] PEG(E) = ca,s9(n)

and the right-hand side is Wn(PgéeE) by stationarity of Pc‘f(l)eg and Lemma Letting n — 0
we deduce that W(PZS) < W(E)(C)).
Since W, (P) is finite, W, (C) is finite P-a.s. and we may define the probability measure

P;}éec = /6Pele(c:dp(c).

We check that
— Pclec i stationary, because Pgéeg is stationary for P-almost every C.
— We have

W(peleey — / W(PEs)dP(C / W(E(C))dP(C) < / (W1(C))dP(C) < Wy (P) +e.

— The push-forward of PS¢ by Conf; is P, because this the case of [ 4 P;g:lcch(C) for all
k> 1. ’
Hence we get that

W1 (P) > min{W(P9*) | P is stationary and the push-forward of P**® by Conf; is P}.

The reverse inequality is obvious by definition of Wl.

2.8.4 Proof of Lemma

Let k& > 0 € > 0 and N be fixed. Let us consider uy € R? such that Cy U (uy + Ci) C
B(0,1/(1 —¢)N). We first bound the number of points in (Cy U Cy + uy) with overwhelming
probabﬂlty, umformly on the choice of uy. For ky = N1/2t1/10 e have:

Ps (N(0, k) + N (un, k) > kx) = 0 (N7),

uniformly on the choice of uy. This can be deduced e.g. from discrepancy estimates as in
Lemma [2.3.8 which imply that

Py (N(0,k) + N (un, k) > kn)

is bounded above by exp(—k3%;) pour ky > VN (and uniformly on the choice of uy). We may
then neglect the event {N(0,k) + N (un,k) > kx} which contributes only with order o(N—%)
o @A11).
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Conditioning on the number of points in C U (uy 4+ Ci) we may then restrict ourselves to
quantify the translation-invariance of p(y 2) ) (k-point correlation function of the determinantal
point process Py 2) for all £ < ky. The determinantal nature of Py o implies that

P2k = det [Kn (2, 25)], ;5.

We know that p(y )1 converges the correlation function p( 91 of Ging which are translation-
invariant (see e.g. [HKPV09, 4.3.7]). Thus we are left to bound the difference between p(y 2) 1
and p(s,2)k- Let us compare the kernels Koo and Ky :

1 gl +\zjw2 M (v 1 g2+ |2 e ()t
KN(l'iaZUj) 7r 7r —— (eacw]) _ Z ( zl'J)
1=0 ' I=N "
1l (IR (o)
= Koo(xi,xj) — e = ( (mzﬁj) .
s =N :

To bound the error term let us observe that
1 _JzPrie? (TR0 (q5)! _|x | |z Lo
e <Z o) ]Zl'(N)N
I=N
1 N\ (21
< = —laia;| [ Petgl —Nl .
. ( N ) (Zz!

=N

We may now use the well-known equivalent
= 1 eV
2Ny
We deduce that

o (Vﬂfz’fﬂj!>N io L) < Cexp (—N <|=’Eﬂj| ~log |lziz;| 1))
7 N =)= N N '

It is elementary that log(1 —¢) < t+ % “ forall t € [0,1]. We deduce that for all z;, z; in the disk
of radius /(1 — )N, since 1 — |x1x]| > e, we have

1 7\Ii|2+|$]’|2 I (ﬂfifj)l
— 2
7Te (Z l!

=N

2
<C exp(—EN).

We thus obtain Ky (z;,2;) = Koo(xi, xj) + O(exp(—%N)) uniformly for z;, z; in the disk of
radius /(1 — &)N.

An explicit computation yields (& denotes the group of permutation of k£ elements and s
the signature morphism)

k 2
det [Kn(zi,2;)] = 3 s(0) ][] (Koo(xi,xg(j)) +O(exp(€2N))>

O'EGk i=1
=det [Koo(zi, ;)] + k! X Ry (2.8.6)
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with an error term Ry satisfying

2

k=1 /7 l c
IRy <) (k) <S.UP VKN(wiaxjH) X O(GXP(—gN))kfl

1=0 b

g2 g
= <SUP|KN($i»xj)| +0(exp(2N))> — sup [Kn (i, ;)]

27‘7 /L?]
but K is uniformly bounded by 1 so that for k < kx we have

IRy| < O(exp(—iN)). (2.8.7)

Since k! < (kn)! is bounded above by

(N335 )1 < exp(N3*3). (2.8.8)

Combining (2.8.6)), (2.8.7) and (2.8.8)) yields

2

det (K (21, 27)] — det [K oo (24, 2;)] - O(exp(—%N)). (2.8.9)

1<i,j<k 1§i,j§k‘

Equation (2.8.9) together with the invariance property of p(s 2y, concludes the proof of the
lemma.

2.8.5 Proof of Lemma

Let m = §, 1 be the average of y over K. We may (see e.g. [PS15, Lemma 6.3]) partition
K into ng, hyperrectangles R;, which all have volume 1/m, and whose sidelengths are in
[Q_dm_l/d, 2dm1/d]. In each of these hyperrectangles we solve

div (]y|’YVhZ) = Cd,s ((5_){1 - m(st) in Rz X [—1, 1]k
Vh; - 7=0 on I(R; x [—1,1]%)

According to [PS15, Lemma 6.5], if X; C R% x {0} is at distance < 2~ (4*Dm=1/4 from the center
p; of R; then we have

lim
n—0

Loy T —casgton] <
i X[—1,

where C' depends only on d and m. We may then define E; = Vh;jlg (%, and by compati-
bility of the normal components, the vector field E&" =}, E; satisfies

div [y E&™) = cg5 (3 0x, — méga) in K x RF
Est v =0 on O(K x RF)
and if n < ny < 27 (@H+2my=1/d
/K o Y[ ES™? = casniug(n) < Crgy (2.8.10)
X

with C depending only on d and m. The last step is to rectify for the error made by replacing
by m. For that, we use the following
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Lemma 2.8.1 ( [PS15], Lemma 6.4). Let Kgr be a hyperrectangle whose sidelengths are in
[R,2R], and p a bounded measurable function such that fKR W is an integer, and let m = fKR 1.
The solution (unique up to constant) to

div (|Jy|"Vh) = cqs(1t — m)dpa in Kr x [-R, R]F
Vh-7=0 on O(Kg x [-R, R]"),

exists and satisfies
/ o VR S O e (2.811)
Applying this lemma provides a function h, and we let
E - E + Vh]‘KX[—R,R]k'

It is obvious that £ solves

div (|y[7E) = Cd,s (> ox, — poga) in K X R
E-7=0 on I(K x RF).

Combining (2.8.11]) and ([2.8.10) and using the Cauchy-Schwarz inequality, we obtain

[ WPIBP < cmiculo(n) + C) -+ CR = il
X

d+1—~

1
+C (nkpg(m)2 B2 [|p— m Lo (k)

Letting then R(K, p) be the family of configurations {Xi}?:Kl’“ above where each X; varies
in B(pi,2*(d+1)m*1/d) (pi being the center of R;), and with all possible permutations of the
labels, we have thus obtained that for every C € R(K, i) the desired results hold.
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Chapitre 3

Lois locales pour le gaz de Coulomb bi-
dimensionnel
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3.1 Introduction

3.1.1 General setting

We consider a system of N points in the Euclidean space R? with pairwise logarithmic

interaction, in a confining potential V', and associate to any N-tuple Xy = (x1,...,zN) the
energy
. N
hn(XnN) = Z —log |z; — x| + NZV(QZZ'), z; € R% (3.1.1)
1<i£j<N i=1

We only impose mild conditions on the potential V' (see Assumption .
For any value of the inverse temperature parameter 8 > 0 we consider the associated N-point
Gibbs measure, which is absolutely continuous with respect to the Lebesgue measure on (R?)V

with a density given by

L e En gy, (3.1.2)

dP3 (X n) =
N( N) ZN,,B

where we denote a N-tuple of points by Xy = (z1,...,zy) and dXy := dz1...dzy. The
constant Zy g is a normalizing constant, also called the partition function, so that the total
mass of IP’]% is 1.

a. Motivations

The model described by and is known in statistical physics as a two-dimensional
Coulomb gas, two-dimensional log-gas or two-dimensional one-component plasma, we refer e.g.
to |AJ81], [JLM93|, [SM76| for a physical treatment of its main properties.

When g = 2 and V is quadratic, the probability measure coincides with the joint
law of eigenvalues of a non-Hermitian matrix model known as the complex Ginibre ensemble,
which is obtained by sampling a N x N matrix whose coefficients are (properly normalized)
i.i.d. complex Gaussians, see |Gin65]. For 5 = 2, more general potentials can be considered,
which are associated to “random normal matrices” (see e.g. [AHM15]). Systems of particles
with a logarithmic interaction as in , called log-gases, have been also (and mostly) been
studied on the real line, motivated by their link with Hermitian random matrix theory. We refer
to [Forl0] for a survey of the connection between log-gases and random matrix theory, and in
particular to [Forl0, Chap.15] for the two-dimensional (non-Hermitian) case.

The Ginibre case (and the case § = 2 in general) has the special property that the point
process associated to IP”?V becomes determinantal, which allows for an exact computation of many
interesting quantities, e.g. the m-point correlation functions. The existence of a matrix model
also allows for universality results at the microscopic scale as in [BYY14a, BYY14b|. In the
present paper we rather work with general 5 > 0 and potential V', thus dealing with what
could be called two-dimensional 5-ensembles by analogy with the one-dimensional $-ensembles
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which generalize the laws of eigenvalues of random Hermitian matrices (see e.g. [DE02|). The
microscopic behavior of one-dimensional S-ensembles has been recently investigated in [BEY12,
BEY14] and we aim at a similar understanding in the two-dimensional case.

b. First-order results: the macroscopic behavior

Let us first recall some results about the macroscopic behavior of the particle system as
N — 0.

If the potential V' has some regularity and grows fast enough at infinity (see Assump-
tion |1 ' there is an associated equilibrium measure peq, such that the sequence {un}n (where
UN = § Zl 1 0z, denotes the empirical measure of the points) converges almost surely to fieq-
Moreover the laW of {un}n satisfies a Large Deviation Principle (LDP) at speed g N? on the
space P(IR?) of probability measures, with good rate function given by

// log |z — y|du(x)du(y /V Ydp(x (3.1.3)

This characterizes the first-order or macroscopic behavior of the interacting particle system.
Typically, as N becomes large, the N points z1,...,zy arrange themselves according to the
probability density djieq, which has compact support ¥. Events that deviate from this predic-
tion occur only with P?V—probability of order exp(—N?). We refer to [Serl5, Chap.2] and the
references therein for a detailed exposition.

c. Microscopic behavior with macroscopic average

In this section we summarize the main result of [LS15|, which describes the behavior as
N — oo of a microscopic quantity obtained through a macroscopic average.

Let X be the set of locally finite point configurations in R?, endowed with the topology of
vague convergence, and let us denote by P(X) the set of Borel probability measures on X i.e.
the set of random point processes on R? (we refer to Section for more details).

In |[LS15] (following the line of work [SS12], [SS15b], [SS15a], [RS15], [PS15]) S. Serfaty and
the author have investigated the microscopic behavior of the system by making a statement on
the point processes arising when zooming in by a factor N1/2 (which is the typical inter-particle
distance) and averaging over translations in a way that we now briefly present.

For any N-tuple XN, let o} = = N1/2g,;, Vy = ZZ 1636/, let ¥/ := N1/2% denote the support

of feq after rescaling, and let ix be the map iy : (R?)Y — P(X) defined by

L= 1
’LN(XN) = IE/’/Ev, (592/,1,;\] dZ/,

where 6,/- denotes the action of translation by 2z’ € ¥/, and where § is the Dirac mass. The
map iy transforms a N-tuple of points into the data of all the blown-up point configurations
obtained by zooming in by a factor N'/2 around any z € . Such quantities are called empirical
fields.

We let By g be the push-forward of ]P”]BV by in. The main result of [LS15] gives a large
deviation principle for {Bx g}~ at speed N, on the space of stationary random point processes.
The rate function on this subset of P(X) is given by

Fp(P) = ng[W] + ent[P[Hl],

where W is an energy functional which will be defined later, Ep denotes the expectation under
P, and ent[P|IT'] is the specific relative entropy of P with respect to the Poisson point process

of intensity 1 in R? (see Section (3.2.5)).
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This LDP characterizes the microscopic behavior only in an averaged way, because of the
average over translations in the definition of iy. In fact (this is still a consequence of [LS15|
Theorem 1]) this description can be enhanced by replacing the average over translations in ¥’
by an average over translations in arbitrary small macroscopic regions (seen in blown-up scale),
for example the square C’(zé,le/?), where £ > 0 is fixed and z{ = N1/2z, for some z, in the
interior of 3 (the bulk). Let us emphasize that the average still takes place at the macroscopic
scale N'/2. This is done in [LS15] by considering “tagged” empirical fields which are elements
of P(X x X) keeping track of the point around which the configuration has been zoomed, thus
allowing for a macroscopic localization.

d. Microscopic behavior with mesoscopic averages

The goal of this paper is to push further the analysis of [LS15] at finer scales and to consider
mesoscopic versions of the map ix. In other terms we look at the empirical fields obtained by
averaging over translations in C(z}, N%) for 0 < § < 1/2, and we obtain a LDP at speed N
with essentially the same rate function as above. It is crucial to average over a relatively large
set and although one might hope to go down to even finer scales (e.g. O(logk N) for k large
enough) we do not expect a similar result to hold for a strictly speaking microscopic average at
scale O(1) (in blown-up coordinates).

The first-order results show that the empirical measure uy := % Zf\il 0z, converges to the
equilibrium measure pqq almost surely. As a consequence of our analysis we get a “local law”
(borrowing the terminology of [BYY14a] and [TV15, Theorem 20]) which implies that py and
eq are close at small scales with very high probability. A very similar local law was obtained
independently in [BBNY15].

3.1.2 Preliminary notation and definitions

a. Notations

For R > 0 we denote by Cg the square [—R/2, R/2]?> and by C(z, R) the translate of Cr
by z € R2. We denote by D(p,r) the disk of center p and radius r > 0. If N is fixed and
X € (R?)N we denote by vy := SN | 6,, and vy := 2N, 6,/ (where 2, = N'/2z;).

Let 0 < § < 1/2. We say that an event A occurs with 5—oxzferwhe1ming probability if

lim sup N2 log IP)?V(.AC) = —00,
N—oo
where A€ is the complement of A. In particular, for any event B, if A occurs with J-overhelming
probability we have

lim sup N2 log IP’?V(B) = limsup N~%° log IP’?\,(B NA),

N—oo N—oo

and the same goes for the liminf. In other terms, when evaluating probabilities of (logarith-
mic) order N 20 we may restrict ourselves to the intersection with any event of §-overhelming
probability.

If {an}n, {bn} N are two sequences of non-negative real numbers, we will write ay =< by if if
there exists C > 0 such that ay < Cby (IP’]BV-a.s. if the numbers are random), and we will write
an =g by if there exists C' > 0 such that ay < Cby with é-overhelming probability.

We will write ay < N? if there exists 7 > 0 such that ay < N°—7 (IP’]’i,—a.s. if the numbers
are random) and ay <5 N° if there exists 7 > 0 such that ay < N°~7 with §’-overwhelming
probability.
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b. Equilibrium measure and splitting of the energy

Under mild hypotheses on V' (see Assumption [1)) it is known (see e.g. [ST97, Chap.1]) that
there exists a probability measure pq with compact support X which is the unique minimizer
of I (as in (3.1.3))) over P(R?) (the set of probability measures). Defining ¢ as

((z) == /1R2 —log |z — y‘dﬂeq(x) + g - (//Rz —log |z — y’dﬂeq@)dﬂeq(y) - ;/RQ Vdﬂeq) )

we have ¢ > 0 quasi-everywhere (q.e.) in R? and ( = 0 q.e. on ¥, and in fact this characterizes
feq uniquely, see [Fro35]. If N > 1 is fixed we let jip,(z) := feq(xN7/2).
If C is a finite point configuration we define the second-order energy functional wy(C) as

wn(©)i= [[ ~logle = 31(de — duly) (0)(dC — diitq) ). (3.1.4)

where A€ denotes the complement of the diagonal A. It computes the electrostatic interaction
of the electric system made of the point charges in C and a negatively charged background of
density ugq, without the infinite self-interactions of the point charges.

Let ((C) := [(dC. Tt was proven in [SS15b| (see also [Ser15, Chap.3]) that the following
exact splitting formula holds:

Lemma 3.1.1. For any N > 1 and any Xy € (RN we have, with I as in (3.1.3)
Nlog N

5 T uN(y) +2NC(vy).

v (Xn) = NI (jieq)
We may thus re-write the Gibbs measure ]P’]ﬁv as
1 1

deV(XN) = KNBe—iﬁ(wN(Vﬁv)-F?Nf(VN))dX“N’ (3.1.5)

where K g is a new normalizing constant. The exponent (wy (y) +2N¢(vn)) is expected to be
typically of order IV, and it was proven in [LS15, Cor. 1.5] that log Ky g = —N min Fj + o(V),
where Fjp is closely related to the function F3 mentioned above.

c. Energy and entropy

Renormalized energy. In [LS15], following [SS12,SS15b/RS15,PS15], an energy functional
is defined at the level of random stationary point processes (see also [Serl5, Chap.3-6]), which
is the I'-limit of %w ~N as N — oco. We will define it precisely in Section and we denote it
by W, (where m > 0 is a parameter - the notation differs slightly from that of [LS15] where it
corresponds to Wm) It can be thought of as the infinite-volume limit of and as a way of
computing the interaction energy of an infinite configuration of point charges C together with a
negatively charged background of constant density m.

Specific relative entropy. For any m > 0 we let II"™ be the law of a Poisson point process
of intensity m in R%. Let P be a stationary random point process on R?. The relative specific
entropy ent[P|II"™] of P with respect to IT"" is defined by

ent[P|TT™) := lim R~“Ent (P, T, ) (3.1.6)
— 00

where Po, denotes the random point process induced in Cg, and Ent(-|) denotes the usual
relative entropy (or Kullbak-Leibler divergence) of two probability measures defined on the
same probability space. We take the appropriate sign convention for the entropy so that it is
non-negative: if p, v are two probability measures defined on the same space we let Ent (u|v) :=
[ log ‘;—ﬁdu if p is absolutely continuous with respect to v and 400 otherwise. For more details
we refer to Section
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d. Good control on the energy

In this paragraph we define the notion of “good control at scale §”, which expresses the fact
that our particle system has good properties in any square of sidelength N° (after blow-up).
The assumption that good control at scale § holds will be a key point in order to prove the
LDP at slightly smaller scales. Moreover we will see that the “good control” assumption can
be bootstrapped, i.e. good control at scale § implies good control at scale d; for d; < J large
enough.

Let us first introduce the local electric field E'°¢ and its truncation E10C we will come back

to these definitions in more detail in Section “ If Xy isa N- tuple of points in R?, for any

(n) (n)

0 <n < 1 we denote by vy, the measure vy = SN 6 2! where 6./’ denotes the uniform

probability measure on the circle of center 2, and radius 7. We let E'o° be the associated “local

electric field” E'°¢(z) := (=Vlog) * (Vi ueq) and E};’C its truncation at scale 7, defined by
Elioc( ) := (=Vlog) * (Vy,, — teq)- Finally, we denote by 3 the interior of ¥.

Definition 3.1.2. For any 0 < § < % we say that a good control at scale & holds if for any

Zp € Y and any 0 < §1 < 0 we have with d1-overwhelming probability:
1. The number of (blown-up) points Ni° in the square C (2}, N°) is of order N*

NE© <5, N2, (3.1.7)
2. For any 0 < n <1 we have

[ B A g =5, N (3.18)
CZ

é

which expresses the fact that the energy in the square C(z}, N°) (after blow-up) is of order
N2,

Let us emphasize that (3.1.7)), (3.1.8) control quantities at scale § by looking at probabilities
at scale 61 < 6.

3.1.3 Rate function
Let us define the local rate function as

FP(P) = gwm(P) + ent[P|TI™].

It is a good rate function because both terms are good rate functions (see e.g. [LS15, Lemma
4.1]).

For any m > 0 we let P, (X) be the set of random stationary point processes of intensity
m. Let us define a scaling map oy, : Ps(X) — Ps(X) such that o, (P) is the push-forward of P
by C — m~Y2C. Tt is easy to see that o,, induces a bijection from Ps.m(X) to Ps1(X) for any
m > 0.

It is proven (see [LS15, Def. 2.4, Lemma 4.2]) that

Lemma 3.1.3. The map o, induces a bijection between the minimizers of Fg' over Ps.m(X)
and the minimizers of ]:51 over Ps 1(X).

We may now state our main results.
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3.1.4 Statement of the results

If zp € ¥ and 0 < &, < 1/2 are fixed, let us define the map iNg, 1 X = P(X) as

i%5,(C) =N /

6 /. / dZ/.
Clepaviny = ENCGRN)

Such quantities are called empirical fields. We denote by B 8.1 the law of the push-forward of
IP’]BV by the map zf\(} 5, - in other words: the empirical field observed around zp by averaging at
the mesoscopic scale N9'. Finally we denote by Meq the density of pieq (see Assumption .

Theorem 11. For any 0 < §; < 1/2, for any zy in Y, the sequence {%?651}]\; obeys a large

deviation principle at speed N with good rate function (f;neCI(ZO) — min fgle‘“(zo)).

Moreover a good control at scale §; holds in the sense of Definition [3.1.2

Theoremtells us in particular that the behavior around zg € )y depends on V only through
the value meq(20), and in view of Lemma it has only the effect of scaling the configurations.
This yields another example of the universality phenomenon: the small scale behavior of the
particle system is essentially independent of the choice of V.

The first consequence of Theorem [11]is a bound on the discrepancy i.e. the difference between
the number of points of v} in a given square and the mass given by u’eq.

Corollary 3.1.4. Let zo € 3, let 0 < 6 < 1/2 and 61 € (6/2,5). We have

JI
C(z),N9)

For §; < § close to 6, the bound N 39 on the difference is much smaller than the typical value
of each term, of order N291. It allows us to prove a local law in the following sense:

15
<5, N3°.

Corollary 3.1.5. Let 29 € X and 0 < § < 1/2 be fized. Let f be a C' function (which may
depend on N ) such that f is supported in C(zh, N°). Then for any §/2 < §; < & we have

/ f(dv, — dily)
C(z(’),N‘s)

In particular if f(z) = f(N"9(z — 2)) for some compactly supported C' function f then
IV £lloo = N0 and || f]|eo = 1, thus we get

/ fldv, — dyily)
C(z(’),N‘s)

a. Comments and open questions.

N~ 250 IV Flloo N+ 11 f oo N 72072,

N~% <5 L

In the statement of the results we restrict ourselves to the following setting: we first pick a
point zg in the interior of ¥ (called the bulk) and then look at the point process in C(2/, N%) with
N—1/22 = 2. A careful inspection of the proof shows that we might have taken 2’ depending on
N more finely, e.g. by considering a sequence 2’ with N=1/22/ — 2 € 3, while keeping the same
conclusions. It does not seem possible to take 2/ — 2y € 9% (the “edge case”) in general because
the density meq may vanish near the boundary - however, this does not happen in the standard
example of the quadratic potential, in which the density is constant up to the boundary of the
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support. Our analysis might be done in the edge case at a scale § > d. depending on the speed
at which meq(2) vanishes, but we do not pursue this goal here.

The minimizers of the rate function are unknown in general, however it is proven in [LS15|
Corollary 1.4] that the Ginibre point process minimizes F, é over P, 1(X) for = 2. We do not
know whether uniqueness of the minimizers holds for 8 = 2, nor for any value of 3. Uniqueness
of the minimizers for some § > 0 would imply that the empirical fields have a limit in law as
N — o0, which would heuristically correspond to some “S5-Ginibre” random point process. In
that case, our results shows that the hypothetical convergence

Empirical field averaged at scale N o [B-Ginibre

holds at arbitrarily fine scales § > 0, which would hint at the convergence in law of the non-
averaged point process v to the conjectural 5-Ginibre point process.

Another open question is the behavior of the minimizers as f — oo (the low-temperature
limit). The crystallization conjecture (see e.g. [BL15| for a review) predicts that the minimum
of Wy on Pg1(X) is (uniquely) attained by the random stationary point process associated to
the triangular lattice. In the high-temperature limit, it is proven in |Leb15b, Theorem 2] that
minimizers of ]-"51 converge (in a strong sense) to IT! as 8 — 0.

The result of [LS15] and most of the methods used in this paper are valid in a broader
setting than the two-dimensional, logarithmic case, in particular we could think of treating the
1d log-gas (i.e. the [B-ensembles). It turns out that an adaptation of the present method in
the one-dimensional case allows one to improve the result of [LS15] to finer, mesoscopic scales,
however, we have been unable so far to go down to the finest scale N ~'*¢ and we hope to return
on this question in a subsequent work.

3.1.5 Plan of the paper and sketch of the proof

In Section we introduce some notation and we give the definitions of the main objects
used throughout the paper, as well as their key properties. In Section [3.3] we gather preliminary
results about the energy wy and we prove the main technical tool, called the “screening lemma”.
Section [3-4] is devoted to the proof of a LDP upper bound and Section [3.4] to the lower bound.
We combine these two steps to prove Theorem [11]in Section together with Corollary
and Section [3.7] is devoted to intermediate results which we postpone there.

Let us now sketch how the proof of Theorem [11]goes. The basic idea is a bootstrap argument,
we find that there exists t < 1 such that

Large deviations at scale d;

Good control at scale 1 for all 9 < &1 <0 (3.1.9)

Good control at scale § — {

Once good control at scale § = 1/2 is established, Theorem follows. A similar bootstrap
argument was used in [RNS15| for studying the minimizers of wy (which corresponds to the
B = 400, or zero temperature case).

The main obstruction to obtaining LDP for empirical fields in our context is the non-locality
of the energy : due to the long-range nature of the interactions, it is hard to localize the
energy in a given square in such a way that it only depends of the point configuration in this
square. Another way of seeing it is that Eloc(m) depends a priori on the whole configuration
Xy and not only on the points close to x.

To prove we rely on the following steps: let zg € 3 be fixed. For the sake of simplicity
let us assume that wy(Xy) = 5 Jge |E™¢|?, where E'°° is the local electric field defined in

Section |d.| (see also Section [3.2.3]).
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—

1. For any Xy, we split the energy wy(Xy) as

/ |EIOC|2 :/ ’Eloc‘2 +/ |Eloc|27
R2 C(2),N°%1) C(2),No1)e

and we split Xy as X™ + X where X™ is the point configuration in C (25, N°1) and
X°ut i the point configuration in C(z}, N%)°.

2. We define F™(X™) (resp. FoUt(X°)) as the minimal energy of an electric field associated
to X (resp. X°"). We thus have

wN(XN) > Fin()zin) _‘_Fout()zout).

The two terms in the right-hand side become independent (they depend from two distinct
sets of variables).

3. Inserting the previous inequality into the expression of the Gibbs measure (3.1.5) we
obtain, for any event A “concerning” X™

PY(A) < K]lvﬁ ( / e—iﬂFi“Wi“)dX'in) ( / @—%6<F°“(X°“t>+2N5<X°“t>>dX°ut). (3.1.10)

This can be used to prove a first LDP upper bound (taking A = {5, (X)) € B(P,e)})
or a first “good control” estimate (takmg A= {Fn(X) > N2},

4. Then we need to prove that (3.1.10)) is sharp (at scale d7). Given X Xout and X it amounts
to be able to reconstruct (a famlly of) point configurations Xy ~ Xout 4 X in guch that
wy(Xy) < Fin(Xn) 4 pout(Xout) 4 o(N201) This is where the screening procedure is
used: we modify Xout and the associated electric field a little bit (this procedure follows
the line of work [SS15b,|SS15a,|RS15,|PS15] and is called screening for reasons that will
appear later) so that we may glue together X" and the new X°" and create an electric
field compatible with the new (slightly modified) point configuration Xny. It is then a
general fact that wy(Xy) (the energy of the local electric field associated to X ) is the
smallest energy in a wide class of compatible electric fields.

In particular, proving a partial converse to (3.1.10) allows us to estimate the “local
partition function”

1 </ e;B(Fout(Xout)+2N§(X0‘lt))dXOut> ’
Kn,s

and also to show a LDP lower bound. Combined with the estimates of the previous step,
it proves (3.1.9)).

Acknowledgements. The author would like to thank his PhD supervisor, Sylvia Serfaty,
for helpful comments on this work.

3.2 Notations, assumptions and main definitions

3.2.1 Assumption on the potential
Assumption 1. The potential V is such that

1. 'V is lower semi-continuous (I.s.c.) and bounded below.

2. The set {x € R? | V(x) < 0o} has positive logarithmic capacity.
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3. We have lim|;|_,q, @ —log|z| = 4+00.

These first three conditions ensure that the equilibrium measure jieq @5 well-defined and has
compact support ¥. Furthermore we ask that the measure pieq has a density meq which is k-
Hélder in X2, for some 0 < k <1

[Meq () — Meq(y)| < |z —y[". (3.2.1)
If V is C?, it is known that Heq is absolutely continous with respect to the Lebesgue measure
on R? and its density coincides with AV in . Thus in particular (3.2.1)) is satisfied as soon as
V is C**. Let us observe that the third assumption (that V is “strongly confining”) could be
slightly relaxed into
v
lim inf (z)

l|]—o0 2

—log |z| > —o0,

i.e. V is only “weakly confining”, in which case the support ¥ might not be compact (see [Har12]
for a proof of the first-order LDP in this case). We believe that Theorem |11| should extend to
the non-compact case as well, since it is really a local result, but we do not pursue this goal here.

3.2.2 Point configurations and point processes

a. Point configurations.

If B is a Borel set of R? we denote by X'(B) the set of locally finite point configurations in
B or equivalently the set of non-negative, purely atomic Radon measures on B giving an integer
mass to singletons. We will often write C for > ,ccd,. We endow the set X := X(R?) (and
the sets X(B) for B Borel) with the topology induced by the topology of weak convergence of
Radon measure (also known as vague convergence or convergence against compactly supported
continuous functions), these topologies are metrizable and we fix a compatible distance dy.

b. Volume of configurations.

Let B be a Borel set of R%2. For any N > 1, let ~y be the equivalence relation on BV
defined as (z1,...,2n) ~N (y1,...,yn) if and only if there exists a permutation o € Sy (the
symmetric group on N elements) such that z; = Yo(i) for i =1,..., N. We denote by BN /&N
the quotient set and by 7y the canonical projection BN — BV /Gy. The set of finite point
configurations in B can be identified to {0} U}, BY /Gn.

If Ac BY /Gy we define Ac BY as A := UceaC- It is easy to see that A is the largest
subset of BY such that the (direct) image of A by 7y is A.

We will call “the volume of A” and write (with a slight abuse of notation) Leb®" (A) the
quantity Leb®V (A).

c. Random point process.

A random point process is a probability measure on X. We denote by Py(X) the set of
stationary random point processes i.e. those which are invariant under (push-forward by) the
natural action of R? on X by translations. We endow Ps(X) with the topology of weak conver-
gence of probability measures, and we fix a compatible distance dp(x), e.g. the 1-Wasserstein
distance. Throughout the text we will denote by B(P,¢) the closed ball of center P and radius
e for dp( X)
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3.2.3 Electric systems and electric fields
a. Finite electric system.

We will call an “electric system” a couple (C,u) where C is a point configuration and p
is a non-negative measurable bounded function in R?. We say that the system is finite if C
is finite and p is compactly supported. We say that the system is neutral if it is finite and

Jg2 dC = [go p(z)dax.

b. Electric fields.

Let 1 < p < 2 be fixed. We define the set of electric fields Elec as the set of vector fields in

LP (R? R?) such that

loc

—divE =27 (C — ) in R? (3.2.2)

for some electric system (C, ). When holds we say that E is compatible with (C, i) in R?
and we denote it by E € Elec(C, 1). If K is a compact subset of R? with piecewise C'' boundary
we let Elec(C, i, K') be the set of electric fields which are compatible with (C, 1) in K i.e. such
that

—divE =27 (C —p) in K.

We denote by Elec” the set of decaying electric fields, such that E(z) = O(|z|72) as |2| — oc.
We let Elec’(C, 1, K) be the set of electric fields which are compatible with C, u in K and decay.

c. Local electric fields.

If (C, p) is a finite electric system there is a natural compatible electric field, namely the local
electric field defined as E'°¢ := —Vlog+(C — u). We also define the “local electric potential”
H"¢ := —log *(C — ). The scalar field H'°¢ corresponds physically to the electrostatic potential
generated by the point charges of C together with a background of “density” u. The vector field
E™¢ can be thought of as the associated electrostatic field. It is easy to see that E'°° fails to be
in L because it blow ups like |z|~! near each point of C, however E'°C is in L} (R? R?) for
any 1 < p < 2.

Truncation procedure. The renormalization procedure of [RS15,[PS15| uses a truncation
of the singularities which we now recall. We define the truncated Coulomb kernel as follows:
for 0 < <1andaz e R? let fy(z) = (—log|z| —logn),. If (C,u) is an electric system and
E € Elec(C, ) we let

By(X) = E(X) = Y V(X —p).
peC

3.2.4 Renormalized energy
a. For finite point configurations.

It follows from the definition, and the fact that —log is (up to a constant) the Coulomb
kernel in dimension 2, that —AH"°¢ = 27(C — 1), where H'°® denotes the local electric potential
associated to a finite electric system (C, ). We may thus observe that wx(C) (defined in (3.1.4)))

can be written )
’LUN(C) ~ _27 /HlocAHloc

™

(up to diagonal terms). Using E'°¢ = VH'°° and integrating by parts we obtain heuristically
wn(C) = [go |E'°°[2. However, this computation does not make sense because E'°° fails to be in
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L? around each point charge (and indeed the diagonal is excluded in the definition of wy). The
correct way of giving a sense to “wy(C) & [p2 |E'°°|*” is to use a renormalization procedure,
using the truncation at scale n defined above. The following is proven in [SS15b].

Lemma 3.2.1. For any N > 1 and any Xy € (R?)N, we have

1
I\ : loc|2
wy(vy) = 5 %13%) - (|E77 |“+ Nlogn) . (3.2.3)

Moreover wy is bounded below on (R%)N by O(N).

b. For infinite electric fields.
Let (C, 1) be an electric system and E € Elec(C, ). We let W, (E) be
L. -2 2
Wy(E) := — limsup R (\En\ —i—ulogn) :
2T R Cr

The renormalized energy of E is then defined as W(FE) := limsup,_,o Wy(E).

c. For (random) infinite point configurations.

If (C, p) is an electric system with p constant equal to some m > 0 we define

m = inf E).
Win(€) = ot WV(E)

Similarly if P is a random point process we let W,,,(P) = Ep [W,,] for any m > 0.
The following lower semi-continuity result was proven in [LS15, Lemma 4.1].

Lemma 3.2.2. For any m > 0 the map P — W, (P) is lower semi-continuous on Ps(X).
Moreover its sub-level sets are compact. In particular, W,, is bounded below.

3.2.5 Specific relative entropy

For any P € Ps(X), the specific relative entropy ent[P|II"™] is defined as in (3.1.6) (see
e.g. |Geo93)).

Lemma 3.2.3. For any m > 0 the map P — ent[P|II™] is well-defined on Ps(X), it is affine
lower semi-continous and its sub-level sets are compact.

Proof. We refer to [RAS09, Chap. 6] for a proof of these statements. O

a. Large deviations for the reference measure.

For 6 >0, N > 1 and Sy € N, let Bg, n,s be the law of the Bernoulli point process with
Sy points in C(0, N9).

Proposition 3.2.4. Let P € P, (X) and 6 > 0, let {Sy}n be such that Sy ~N—oo mN?% for
some m > 0. We have

lim lim N~*'log By n,s({i%4(C) € B(P,e)}) = —ent[P|TI"™]. (3.2.4)

e—=0 N—oo
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Proof. First, let us replace Bg, s by II"", the law of a Poisson point process of intensity m.
It follows from |Geo93, Theorem 3.1] that

lim lim N> log IT"({i3 ;(C) € B(P,e)}) = —ent[P|II"]

e—=0 N—oo

—mNQ‘S (mN26)SN

The probability under IT™ of having Sy points in C(0, N%) is given by e e and
Stirling’s formula yields

mN20)Sn S mN¥» 8
N—25 lOg (e—mN%(S]V')) = —m+ N];; og SN + N]2V(5 + 0(1)

Since Sy ~xn mN? the right-hand side is o(1). It is not hard to conclude that ([3.2.4) holds,
using the fact that P itself is of intensity m. For more details we refer to [LS15, Section 7.2]
where a similar result is proven. O

3.3 Preliminary considerations on the energy

3.3.1 Monotonicity estimates
a. Almost monotonicity in 7 of the local energy.

The next lemma expresses the fact that the limit n — 0 in (3.2.3) is almost monotonous.

Lemma 3.3.1. Let (C, 1) be a neutral electric system with N points and E'¢ be the associated
local electric field. We have, for any 0 <n <m <1,

([, 18+ Nioga) = ([ 1252 + Nlogmr ) = =Nl (3.3.1)
Proof. This is [PS15, Lemma 2.3]. O

Let us note that, integrating by parts, we may re-write fRQ \E%OC\Z as ng —H,%OCAH,IIOC and
(3.3.1)) is really a monotonicity estimate for ( Jr2 —H};’CAH}]OC + Nlog 77) as 7 varies.

b. A localized monotonicity estimate.

Lemma 3.3.2. Let (C, i) be an electric system and E'° be the associated local electric field.
Let Ry > 10 and let N™ be the number of points of C in Cr,. We let also NP be the number
of points of C in Cr,\Cr,—5. We have for any 0 <m < ng < 1,

( [ rer - e logm) - ( | iR N logno> = — Nl oo
Chr Cr

2 2

+ N o + (logm — 1) | (1Eeep? + | )
Cry\CRy—5

Proof. 1t follows from the proof of [PS15, Lemma 2.4], see e.g. [PS15, Equation 2.29] and the
one immediatly after. O
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c. Almost monotonicity with no points near the boundary.

Lemma 3.3.3. Let (C, i) be an electric system in R? and E'°¢ be the associated local electric
field. Let 0 < Rg and let 0 < m1 < 1 be such that the smeared out charges at scale 1 do not
intersect OCR, i.e. Upec B(p,m)NACR, = 0. Let us denote by N™ the number of points in Cg,.
Then we have for any n < n;

(/ |EY|* + N™ 10g77> - (/ |Epc|? + N™ 10g?71> = =N |l (3.3.2)
Cr, Cr,
Proof. We postpone the proof to Section [3.7.1 O

3.3.2 Discrepancy estimates

Lemma 3.3.4. Let N > 1, and let C be a finite point configuration in R%. Let E be a gradient
electric field in Elec(C, pie,). For any R > 0, let Dg be the discrepancy Dg := fCR(dC — dpigy) in
Cr.

For any n € (0,1) we have

Dr
D% min <1) j/ |Ep|2.
R R2 Con n

Proof. This follows from [RS15, Lemma 3.8]. O

As a corollary, we see that if a good control holds at scale &, then the discrepancies are
controlled at smaller scales.

Lemma 3.3.5. Let 0 < § < % and let us assume that a good control holds at scale §. Then for
any R € (AN, 2N1) with g < 61 < 0 we have

1Dg| <5, N30, (3.3.3)
Proof. Let us apply Lemma with 1 = 1/2, taking E to be the local electric field E'°°. It

yields
. Dp loc (2
D% min <1,) j/ |E5%.
Rr? Car /

Using the good control on the energy at scale § (in the sense of Definition (3.1.2)) we have
fCZR |Ei‘;62|2+/\/'23 log(1/2) = N? and Nap is itself <5, N?°. We thus obtain that D% min (1, %) =5

N?°. Then, elementary considerations imply that if g < 61 < 0, we have D% =<5, N 2(01+9) which
yields (3.3.3). O

Application: number of points in a square.

Lemma 3.3.6. Let 0 < d < % and let us assume that a good control holds at scale §. Then we
have, for any R € (AN, 2N°t) with 26 < 61 < &, and for any z) € ¥, letting NF = fC(z’ r)dC
07

‘./\/'EO - meq(zo)RQ‘ <5, N?1, (3.3.4)

Proof. We have by definition fC(Z, R) diteq = fo(z, R) Meq(20 + tN~Y4)dt. Using the Holder
0 0’
assumption ((3.2.1]) we get ‘fC(z’ R) diteq — RQmeq(zo)‘ < N291+:(01-3) Gince 1 > 0 and §; < 1/2
0°

we get ‘fC(z(’),R) diteg — R2meq(zo)‘ < N?. Lemma [3.3.5] yields ’/\/’éo - fc(zg,R) dileg| <6, N3,
Combining these two inegalities we see that if 0; > £6 then (3.3.4) holds. O
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3.3.3 Minimality of local energy against decaying fields

Lemma 3.3.7. Let K C R? be a compact set with piecewise C* boundary. Let (C,u) be a
neutral electric system in K. Let E° be the local electric field associated to (C,u) and let
E € Elec®(C, ). For any 0 < n < 1 we have

/2 |E°? < /2 |E, |2 (3.3.5)
R R

The proof is very similar that of [LS15, Lemma 3.12] and we postpone it to Section

3.3.4 The screening lemma

Lemma 3.3.8. There exists C' > 0 universal such that the following holds.
Let z € R? and for any N let (C,u) be an electric system in R?, let 0 < 63 < 62 < 61 < 1/2
and let Ry, Ry positive be such that, letting m, := N9, we have

1. Ry € [N 4+ N% N% 1+ 2N%] and Ry € [Ry — 3N%, Ry — 2N%].

2. The smeared out charges at scale n1 do not intersect C(z, Rg), i.e.

N
U D(p,m)NIC(z,Re) = 0.
peC

3. N&" 4s an integer, where N&" := fC(z R1) du.

4. Letting N™ = [0 g\ oo my A€ it holds N™¢ < N2,

Let us assume that u satisfies 0 < m < p <m on Cr,\Cr, and that furthermore there exists
Cy > 0 such that
V(z,y) € (Cr\Cr,)?, ln(@) — p(y)| < Cula —yI, (3.3.6)

where k is as in (3.2.1)). Let E be in Elec(C, u, R*\Cg,) and let M := Jocs, |E,|%.
2
If the following inequality is satisfied
M < C'min(m?,1)N3%, (3.3.7)

then there exists a measurable family AR™ of point configurations such that for any C'™» € AR™"
1. The configuration C*™ is supported in Cr,\CRr, .

2. The configuration C*™™ has N points where (with 7 the unit normal vector)

Nt — / E, -1 — / dps. (3.3.8)
dCRr,, Cpry\CR,

3. The points of C™'™ are well-separated from each other and from the boundaries

min  |p1 —po| = m /2, min dist(p,dCr, UACR,) = m /2. (3.3.9)
p1¢p2€ctran pectran

4. There exists an electric field E*™ € Elec(C"", u, Cr,\Cr,) such that

(a) We have
E, -1 on OCRg,

Etran . g — ) 3.3.10
mn {0 on OCR, ( )
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(b) The energy of E'™" is bounded by

/ |2 X N%M + NOH35C, N™s 4 N Jog N (3.3.11)
CRQ \CRl

Moreover the volume of AY™ is bounded below as follows
log Leb®V"™" (A%an) = —(mN+0s 4 NOU 4 M) log . (3.3.12)

Proof. The result is inspired from the “screening lemmas” of [SS15b|, Prop. 6.4], [PS15| Prop 6.1]
and [LS15, Prop 5.2]. Our setting is slightly simpler because we have ruled out the possibility
of having point charges close to the boundary 0Cr,. Here we screen the electric field “from the
inside” (a similar procedure is used in |[RNS15|) whereas the aforementioned screening results
were constructing a field £ such that E = 0 outside a certain hypercube. Another difference is
that in the present lemma we really need to deal with a variable background .
In the rest of the proof we set [ = N%.

Step 1. Subdividing the domain. We claim that we may split Cr,\Cg, into a finite family of
rectangles { H;};cr with sidelengths in [{/2,2]] such that letting m; := |HLZ| sz dp and

1 1 /
m; =m; + ——— E, -7,
’ ' |H7f|27r 8CR208HZ~ !
we have for any i € 1

_ 1
\mi - mz| < im’ m1|Hl| € N.

The fact that we may split Cr,\Cg, into a finite family of rectangles { H; };c; with sidelengths
in [1/2,2l] is elementary. Using Cauchy-Schwarz’s inequality we see that
‘ 1

Lo B = ]
.n _7
[Hi| Jocg,nom; K 132\ Jocy

hence assuming ([3.3.7) (with C large enough) we have [m; — m;| < m for any tiling of Cg,\Cg,
by rectangles of sidelengths € [1/2,2l]. It remains to show that we may obtain a tiling such that
m;|H;| € N. We have by definition

1/2
’E’r]’2> — Ml/?z—?)/?

2

mZ]HZ\:/ d,u—i—2i E,-n.

H; T JOCR,NOH;

Increasing the sidelengths of H; by ¢ (with ¢ < [/10) increases |, H, dp by a quantity = mlt
whereas it changes [, 9C Ry NOH; E, - i by a quantity = VtM. We thus see that if holds, up
to modifying the boundaries of H; a little bit (e.g. changing the sidelengths by a quantity less
than [/10) we can ensure that each m;|H;| € N.

We may then subdivide further each rectangle H; into a finite family of rectangles { Rq }aer,
which all have an area m,; I and sidelengths bounded above and below by universal constants
times m; 1/2 (for a proof of this fact, see [PS15, Lemma 6.3.]). Let us emphasize that since p is
bounded above we have m,; 1 < 1.

Step 2. Defining the transition field and configuration. For i € I we let E0) := V(1) where
h(11) is the solution to
— AR = 27 (m; — ) in H,

such that VA1) .77 = —F, -ii on each side of H; which is contained in 9Cg, and VA .77 = 0
on the other sides.
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We also let, for any «a € [, h(2%) be the solution to
—ARZY) =27 (8, —m;) in Ry, VA .7 =0 on dR,,

where p,, is the center of R,. We define E?%) as E(29) .= > acl; Vh(%%), Finally we define the
transition field E'™™ ag E™" := Y. ; EWD) 4 B9 and the transition configuration C*?" as
CUa =31 Yner, Opa- It is easy to see that

E, -ii  on OCRg,

. (3.3.13)
0 on 0CR,

—div (B"™™") = 27 (€™ — 1) in Cr,\Cr,, Ep™™ i = {

In particular (3.3.8]) and (3.3.10) hold.
Step 3. Controlling the energy. For any i € I the energy of E(1%) can be bounded using Lemma

B.7.1] as follows
[P ml
H, OH,NCk,

and using the Holder assumption (3.3.6) on p we have ||u — mi||%oo(Hi) = C,I" hence

/ ‘E(l’i)|2 ‘<l/ ‘En‘2+cul4+ﬁ.
H; BHmBCRQ

For any « € I; we also have, again by standard estimates

/ |Vh7(721"")|2 < —logn =< log N by choice of 1.
Ra

The number of rectangles R, for a € I;, i € I is bounded by the volume of Cr,\Cg, hence is
< N1t We deduce that

[ BR[O #IC N og N,
Cry,\CR, 9CR

2

where #1I denotes the cardinality of I. We may observe that #I < N%+9%]=2 and get (using
that [ = N%,)

/C . |Eiran|? < N0 M 4 NOF3%s 0y NR% 4 NOUHs Jog IV,
Ro \™V Ry

which yields (3.3.11)).
Step 4. Constructing a family. As was observed in [PS15, Remark 6.7], [LS15, Proposition

5.2], we may actually construct a whole family of configurations C*"" and associated electric
fields E'" such that and hold. Indeed, since p < M the sidelengths of R, are
> M~/ hence we may move each of the points p, (for o € I;, i € I) arbitrarily within a disk
of radius %m—l/ 2 and proceed as above (so that is conserved). This creates a volume of

configurations of order m—~ " To get (3.3.12)) it suffices to observe that
Ntran ij51+53 +N§1 +M7

which follows from (3.3.8|) by applying the Cauchy-Schwarz inequality and using the fact that
R} — R} < No1+9s, O
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3.4 A large deviation upper bound

Given a point zg and a scale d; we localize the energy wy (X: ~) by splitting it between the
“interior part” (which, roughly speaking, corresponds to the L2-norm of E'°¢ on C(z}, N°)) and
the “exterior part”, then we replace both quantities by smaller ones which are independent (this
corresponds to separating variables). Roughly speaking, it allows us to localize the problem on
C(zh, N°) by deriving a “local energy” (which corresponds to the interior part) and a “local
partition function” (the exponential sum of contributions of the exterior part). This lower bound
on the energy will be complemented by a matching upper bound in Section

3.4.1 Definition of good interior and exterior boundaries and energies

The decomposition between interior and exterior part will be done at the boundary of some
“good” square, not much larger than C(z(, N 51). We give the definition of good exterior and
interior boundaries, with an abuse of notation which is discussed in the next subsection.

Definition 3.4.1 (Exterior boundary). Let 1/2 > 6 > 61 > d2 > 0 and no > 0 be fized, let
N > 1 and let gy := N0, Let z € i, let Ry > 0 and let X°% be a point configuration in
C(Zé, Rg)c.

Exterior fields. We say that F is in EIecOUt(XO‘”) if £ is in EIecO(C,,u’eq,]RZ) for some point
configuration C with N points such that C = X°" on C(z, Ro)".

Good exterior boundary. Let E € Elec®t(X°"). We say that dC(z}), Ry) is a good exterior

boundary for E if the following conditions are satisfied:

1. We have
Ry € [N 4 N%2 N 4 9N%], (3.4.1)
2. The smeared out charges at scale m do not intersect IC(z(, R2)
U D(p,m) N9C (2, Re) = 0. (3.4.2)
peC

3. The energy near OC (2, R2) is controlled as follows

/ | Eyo|* = N**7%log o), (3.4.3)
C(zy,R2)\C(z},R2—5)

/ |Ey, |2 < N*%2log N, (3.4.4)
C(z,R2)\C(z),R2—5)
Lo VBl = N30 (349
z(,R2
. bou ._
4. We have, letting NP := fc(267R2)\C(267R275) dc
Nbou o 201 (3.4.6)
5. We have, letting N™ := fC(Z(I):R2) dc
Nt < N2 (3.4.7)

6. We have, letting N3 := fC(26 nory dC

N — 5 < N2 and N5 — Meq(20) N2t | < N1, (3.4.8)

This very last inequality does not depend on Ra, but it is convenient to include it in the
definition of the exterior boundary.
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Best exterior energy. Let N°“ denote the number of points of Xout jp C(z), R2)¢. We
define FOUt(X°") qgs

. 1
out outy .__ . : 2 out
FoUt(Xom) .= o mblnrlll_% (/C(z&m)c \Eyl"+ N logn)

where the min s taken over the set of electric fields E satisfying E € EIecOUt(XOUt) and such that
IC (2}, R2) is a good exterior boundary for E (if there is no such field we set FO"*(X°") = +o00).

The minimum is achieved because on the one hand E — |E,|* is coercive for the weak LY .

topology, and on the other hand the L? norm is coercive and lower semi-continuous for the weak
L? topology.

Definition 3.4.2 (Interior boundary). Let 1/2 > 01 > d2 > d3 > 0 and n9 > 0 be fized. Let
N > 1 and let zy € i, let Ry > 0, let Ro > 0 such that holds and let X™ be a point
configuration in C(z{, Ra).

Interior fields. Let E € Elec(R?). We say that E is in Elec™(X™) if E is in Elec’(C, Heqs R?)
for some C € X(R2) such that C = X™ on C(z), Ry).

Good interior boundary. We say that OC(z, R1) is a good interior boundary for Xin if

1. We have

R; € [Ry —3N% Ry — 2N%]. (3.4.9)

2. N8 is an integer, where N8 .= fC(z’ R1) dugq.
0’
3. Letting N™ := [0/ poy\c(ar ryy 4C it holds
0 0

Nmid « N2, (3.4.10)

Best interior energy. Let N™ denote the number of points of X i C(z, R2). For any
0 < no <1 we define F%g as

o, 1 )
FR (X)) .= — min / |E¢|2 + N lognp |,
70 27 E ( C'(z67R2) 10

where the minimum is taken over the set of electric fields E such that E € Elec™(X™) (if
Elec™(X™) is empty we set F'M(X'™) = +00).

3.4.2 Finding good boundaries

The conditions (3.4.3)), (3.4.4), (3.4.5), (3.4.6)), (3.4.7), (3.4.8), (3.4.10) are asymptotic as
N — o0, in particular they do not make sense for a finite N (nonetheless, (3.4.1)), (3.4.2)) and
(3.4.9) do). Strictly speaking one thus has to consider sequences Ry = Ro(NN) and Ry = Ri(N).

Lemma 3.4.3. Let 1/2 > § > §; > 02 > 03 > 0 and n9 > 0 be fized, with 61 > 2§/3. Let
20 € X and ng > 0 be fized. Assume that good control at scale & holds and let 6, € (6/2,6).
With 61-overhelming probability, there exists Ri, Ro such that, letting Xin = X;v NC(z, R2) and
Xout — X\ N C(zh, Ry)e, we have

1. 0C(z), R2) is a good exterior boundary for Xout ploc,
2. 9C(zy, R1) is a good interior boundary for Xin,
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Proof of Lemma[3.4.3 First we look for a good exterior boundary dC(2(), R2). The good control
at scale § implies that

/( ; | B> <5, N*(1+|logm]|) = N* log N, (3.4.11)

C(z),N

/C( ) | B ? <5 N?(1+ [log mo|) = N**|log . (3.4.12)
25

In view of (3.4.11)), (3.4.12), by the pigeonhole principle, we may find (with J;-overhelming
probability) an interval [R — 10, R + 10] included in [N®' + N% N 4 2N%] such that

/ (|E};;C 24 |Epe 2) < N2=%2(log N + |log no]). (3.4.13)
C(2, R+10)\C(}, R—10)
We may find N? disjoint strips of width 2N~?(log N)~! in [R — 8, R + 8]. In view of (3.4.13)),
there are at least N2/2 such strips on which the integral of |E}£C|2+ |E}]%C|2 is < N20=%2-2(]og N+
|lognol). On the other hand there are at most N point charges, thus since n; = N~19 by the
pigeonhole principle we may moreover assume that no smeared out charge (at scale 7;) intersects
the strips. Finally a mean value argument on one of these strips shows that we may find Ro
such that (3.4.5) and (3.4.2) holds. By we also have (3.4.3) and (3.4.4]).

Next, we look for a good interior boundary 9C(z(, R1). Since zp is in the interior of X,
the density my, is bounded above and below by positive constants on C/(z(, N %) (for N large
enough) and thus the derivative of R — |, C(h,R) dm/,, is bounded above and below by (positive)

q

constants times N° on C(z),2N%). Hence we may find Ry € [Ry — 3N%, Ry — 2N%] such

that fC(z’ Ry Qlleq is an integer, hence the first two points of the definition of a good interior
0’ 1) eq

boundary are satisfied.

We have (3.4.7) with d1-overhelming probability according to the good control at scale §.
Since 61 > 26/3, the discrepancy estimates of Lemma imply that, up to an error <5, N 201
we have

NP = meq(20)(R3 — (R — 10)°) =5, N°' < N
Y = g (20) (R — BY) <5, NOFO2 < N2,

which proves (3.4.6) and (3.4.10). We obtain (3.4.8) with similar arguments. O

3.4.3 A first LDP upper bound

Proposit;ion 3.4.4. Let 1/2 > § > 01 > 63 > 93 > 0 be fized with 61 > 25/3 and 20 — dg < 0.
Let zg € X and 0 < ng < 1 be fired. Assume that a good control holds at scale §.
For any P € Ps(X) and any € > 0 we have

log By g5, (B(Pr¢)) < —log Kn g

tlog max | / eéMWWan(/e;ww@mnwwmwxm)
Ry, Rp,Nout \ Nout i35, (X)EB(Pe)

+ N210(ng). (3.4.14)

Let us first give some precisions about (3.4.14)). The max on Ry, Ry, N° is restricted to the
set of {Ry, Ry} such that (3.4.1)) and (3.4.9) hold, with N°* between 1 and N. Once N°" is
fixed, we let dX™ = dxy ...dzym and dX°" = dz; ... dxyou, with NOU + N» = N,
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Proof. Using the definition of ‘137\?7 5.5, and of the Gibbs measure IP”?V we have

B 55, (B(P,2)) = —— / e 2PN )TN g i (3.4.15)
" Knp J2s )-1(B(Pe)

Step 1. Finding good boundaries. We apply Lemma [3.4.3] With d;-overhelming probability
we obtain Ry, Ry such that (3.4.1)) and (3.4.9) holds, and such that, letting X™™ = X}VOC (20, R2)
and X°U = X N C(z), R2), we have

1. 9C(z(, R2) is a good exterior boundary for Xout ploc,

2. 8C(z}, Ry) is a good interior boundary for X™,

In order to prove (3.4.14]) we may restrict ourselves, in the right-hand side of (3.4.15)), to any
event of §1-overhelming probability, and we will henceforth assume that good boundaries exist.

Step 2. Splitting the energy wy. For any XN, let R;, Ry be as above. We have, using
(13.2.3))

wy (V) = lim / |EX°|> + N™logn | + lim / |E°)” + N logn | . (3.4.16)
=0 \J (24, Ra) 10N\ Oz, Re)e

Since (3.4.2)) holds we may apply Lemma to ()Z’}V, Heq) and Rg,my as above. It yields, since
—10
m = N )

lim / |E717°C|2 + N logn | > / |E:£C 24 N™logn | +o(1), as N — oc.
10\ JO(2),Re) C(z},R2)

We may then apply Lemma m to (Vy, ,ugq) and Ry, with 19,7, as above. The number N'™
of points in C(z}, R2) is controlled by (3.4.7), the number NP°" of points near the boundary is
controlled by (3.4.6) and the energy near the boundary is controlled by (3.4.3) and (3.4.4]). We

obtain

</ |E,}]Cic 2 +Nin 10g771> _ </ |E;]%C 2 +Nin logno)
C(z(,R2) C(z(,R2)

- _N251n0 _ Nbou lOgN _ N25—§2 (10g N)Q,

which may be simplied (assuming that 2§ — dy < d1, which will be later ensured by the choice
(3.5.4)) as

( / |E°°)> + N™ log m) — ( / |E°¢[* + N™log 770) = — N2y, (3.4.17)
C(Z(/),RQ) C(zé,Rz)

Using Definition [3.4.2) we thus get

1

— lim / |EL°°|2 + N™logn | — FI*(X™) = —no N2, (3.4.18)
2 n—0 ( C(Zé,RQ) n o

On the other hand, we may write, using Definition [3.4.1

— lim < / |EX°[* + N°" log n) > pout(xouty, (3.4.19)
C(Zé,RQ)C

Combining (3.4.16), (3.4.18)), (3.4.19)) and inserting them into (3.4.15) yields (3.4.14]). O
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3.4.4 Good control upper bound

Lemma 3.4.5. Let 1/2 > § > 61 > 02 > d3 > 0 be fized with 61 > 25/3. Let zy € Y and
0 <mng <1 be fizred. Assume that a good control holds at scale d.
Let us denote by Epy the event

En = / |E)® + N0 logmg > 2N M ¢ . (3.4.20)
C(z(),N‘Sl)
We have
3 B
lOg]PN (8M) S —IOgKN”g — §M

N out [ yYout *( Yout —
] —BEPH (XM NC(X ))dXOUt) N2'O(n). (3.4.21
+log | max, (N> (/e FATOm) (3420

Proof. We follow the same steps as in the proof of Proposition replacing the event B(P,¢)
by SM

Let us write

/ |E#%C2+Ninlogno > / \E}%CQ—i—N;lO log 1o —|—(Nin—/\f§1°)lognn0
C(z),R2) C(z},R1)
Using ((3.4.17)) and the definition of £y; we get, conditionally to Eys
(/ |E°°[> + N™ log m) > N*M'M + (N™ = N;°) log o + O(N*").
C(Z(/),RQ)
Since we have [N™ — N{°[5, < N 201 we deduce that (conditionally to £y7), using Lemma

lim ( / |EX°[* + N™log 77) > N2 M 4 O(N?Y), (3.4.22)
=0 \JC(z},R2)

Using ([3.4.22)) instead of (3.4.18) and arguing as in the proof of Proposition [3.4.4] gives (3.4.21)).
O

3.4.5 Large deviation upper bound for the interior part

In (3.4.14) we have separated the Gibbs measure into its interior and exterior parts. In the
next lemma, we give a large deviation upper bound for the interior part, namely

1 3 pin (i .
/ e g X,
in. 5, (XM)EB(Pe)

Up to technical details, this is a classical application of Varadhan’s lemma: the large deviations
for the reference point process (without the exponential term) are known from Proposition
and on the other hand the lower semi-continuity of the energy near a random stationary point
process P implies that Fgg()?in) > Wi (20)(P) on {30 5, (X™) € B(P,¢)}, hence we obtain

Lemma 3.4.6. Let 1/2 >0 > §; > 02 > 03 > 0 be fized with 61 > 25/3, and let us assume that
good control at scale § holds. We have, for any Ry, Ry satisfying (3.4.1)), (3.4.9), and any N™

1n0—0,e—0,N—o00

limsup N2t log/ e~ 3BF (XM g gin < —f;ne“(zo)(P). (3.4.23)
i 5, (XM)EB(Pe)
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Proof. Step 1. Lower semi-continuity of the energy. We claim that
s s —267 in/ viny yin / -2 v in
L dmine N tinf { FIn(X™), X1 € X(C(2, Ra)), i3, (X™) € B(P,e)}

> Wi ooy (P). (3.4.24)

To prove (3.4.24), let E = E(N) be a minimizing sequence in (3.4.24)), let C = C(IN) be the

associated point configuration in C(z(), N 1) and let us define

P]e\)}ec — N—2(51/

(59/2.Edz', Py = N—20 / 59/2.ch/.
C(zH,N°1) C(2},N%1)

We have, for any m > 1,

1
E petec / | By, |2 gN‘251/ |Ep|?,
PN [’Cm| Cm 0 C(Z(,],Rg) 0

which proves that the push-forward of P by E E,, is tight in L?*(Cy,,R?) for the weak
topology, whereas the sequence {P§°} itself is tight in LP(C,, R?) (indeed when 7 is fixed,
the L?-norm of E, controls the LP-norm of FE, this follows easily from Hoélder’s inequality,
see [RS15, Lemma 3.9]). On the other hand, the sequence of random point processes {Py} is
also tight because the expectation of the number of points in any square is bounded and, up to
subsequence extraction, it converges to some Q € B(P,e). Denoting by Q¢ a limit point of
{Pﬁ}ec} it is not hard to see that Q®'°° is compatible with @, and by lower semi-continuity of the
L?-norm with respect to weak convergence we have

1 / 2 1 s —20 / 2
—_— E dQe €c < hm lnf N 1 E .
’C77L| Cm ’ 0 ’ N—o0 C(z,R2 ‘ " ‘

Up to applying a standard diagonal extraction procedure we may assume that it holds for any
m > 1, hence

Egetec[| E \Q]SHmian—%/ |E,, |2
Q 10 Nesoo ot o) 10

Letting ¢ — 0 and arguing as above concerning the tightness of Q¢ and @ (in LP ~and in X)

and for the lower semi-continuity of the norm with respect to weak convergence we obtain

E elec E 2 <li li . fN_Q(Sl/ b 2
pelec]| 7]0’ ] 781_1)1(1) }%10% C(z(’),N‘Sl)‘ 770’

where P is some random electric field compatible with P. Letting 19 — 0, using (3.4.8)) and
the definition of W,,,__(.,)(P) we thus obtain

eq 20)

Wiea(zo)(P) < lim  liminf N~ (/ | Bl + N5? logn()) :
C(z(’),N‘sl)

~ 1n0—0,e—-0 N—oo

Step 2. Large deviations without interactions. We claim that, on the other hand

limsup N~ log / Lo(s fy) (X ™)dX™ < —ent[P|TT™ea(=0)], (3.4.25)
i 0

£—0,N—00 i 5, (XM)EB(Pee)

The configuration X™ has N'™ points. Among them, N — A 5. are not affected by the
constraint if\?é(fi“) € B(P,¢) because they belong to C(z), N°)¢, and are free to move in
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C(zh, R2)\C (2, N°1), but we know from (3.4.8) that N™ — Nyt < N?231 thus the volume con-

tribution of these points is negligible because N =29 log|C(2), Ra)\C(2), N‘Sl)\NmfNﬁf = o(1).
On the other hand we know, using (3.4.8), that N5® ~n_0 Meq(20) N2t and then ([3.4.25))
follows from Proposition [3:2.4]

Step 3. Conclusion. Combining (3.4.24)) and (3.4.25)) yields (3.4.23]). O

3.4.6 A second LDP upper bound
Combining Proposition [3.4.4] and Lemma [3.4.6] and letting 9 — 0 we obtain

Proposition 3.4.7.

lim lim sup N ~2% log PN ss (B(Pe)) < —]-'IZ%Q(ZO)(P) + limsup N~ %1 log Kﬁ/,z,(ﬁ (3.4.26)

=0 Nooo N—oo

where we let Kﬁ,z 51 be such that

Z ( N )/eéB(Fout(XOUt)+N§(XOUt))dXOUt. (3427)

log Kfﬂth = —log Ky + log/ Nout

R1,R2 pout

3.5 Large deviation lower bound

In this section, we derive a converse estimate to (3.4.26)), by showing that splitting the
energy as in Proposition is essentially sharp as far as probabilities of order exp(—N?1) are
concerned.

3.5.1 Generating microstates

In the next lemma, we recall a tool which was introduced in [LS15]. Given a stationary point
process P and a large square C'r, Lemma [3.5.1] can be thought of as a way of generating a family
of point configurations in Cr whose empirical field is close to P, whose interaction energy is
close to the renormalized energy of P, and such that the volume of the family is optimal in view
of the specific relative entropy of P.

Lemma 3.5.1. Let zg € ¥ and 0 < 83 < 61 < 1/2 be fized. Let P € Ps meq(z0) (X) such that
Wineq(z0) (P) and ent[P|TI™<a(20)] are finite.
For any N > 1, let Ry > 0 be such that Ry € (N, No 4+ 2N°%2) qnd N8 := fC(z’ R1) dmy,
0’

is an integer. Moreover let us assume that N8 ~n_ oo meq(z())N%l.
Then there exists a family Aif\}t of point configurations in C(z{, R1) such that the following
properties hold for any C'™ € Alt:

1. The configuration C™* has N&™ points in C(z), R1).

2. The continuous average of C™ on C(z}, N°') is close to P, i.e.

i%5,(C™) € B(P,0(1)) as N — oo. (3.5.1)

3. There exists an electric field E™ € Elec (Cint,,ugq, C(z, Rl)) such that

(a) E™ .77 =0 on 0C(z}, R1), where i is the unit normal vector.
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(b) The energy of E™ is controlled by Wireq(z0) (P)

1 .

— N2 Eint|2 4 peen <W P 1) as N —

B ([ 7)) 1) 0
(3.5.2)

uniformly on AL,

4. The (logarithmic) volume of the family is close to the relative specific entropy of P
N1 10g Leb®V*" (A1) > —ent[P|TT™<a(0)] 4 0(1), as N — occ. (3.5.3)

Proof. This follows from the analysis of [LS15| Section 6]. Let us sketch the main steps here.

We fix R > 0 and we tile C(z(, R1) by squares of sidelength ~ R. We let {C;};cs be this
collection of squares and z; be the center of C;. We sample a point configuration C in C(z(, R1)
according to the law Bpsen of a Bernoulli point process with N&" points, and we decompose
C as C = > ,c7C; where C; := C N C; is the point configuration in C;. We form two points
processes, the continuous average M; := 17\? 5 (C) and the discrete average My := % > icr0c;-
Classical large deviations arguments (similar to Section show that both M; and My bleong
to B(P, &) with probability ~ exp(—N2tent[P|ITtea(2)]).

Then we apply to each point configuration C; the “screening-then-regularization” proce-
dure of |[LS15, Section 5]. The screening procedure is similar in spirit to the one described in
Lemma [3.3.8] except that here we change C; to C;°" by modifying the configuration only in a thin
layer near 0C; and we construct an electric field E}*" compatible with Cj°" and which is screened
outside C; (whereas in Lemma we rather “screen the configurations from the inside”). By
gluing the fields E;“" together we define E" which is compatible with C% := . ;C’". The
next task is to “regularize” the point configurations, which means to separate the pairs of points
which are too close from each other. This changes C" into C™°¢ (which is very much like C5)
and E5 into an electric field E™°? which is still screened outside C/(z}, R1).

The energy of E" can be seen to satisfy, for any 0 < n < 1

/ ‘Ezcr’2 + [Neen logn _ Z ‘(Elscr)n’2 4 N&en logn,
C(Zé7R1) icl Ci

and a certain continuity property of the energy shows that the right-hand side is smaller than
N2 (Wineq(z0)(P) + 0(1)) often enough. Passing from E* to E™°d does not affect this esti-
mate, on the contrary the regularization procedure allows to bound the difference between the
truncated energy fC(z(’),Rl) |E’f?°d|2 + N&"logn and its limit as n — 0. O

3.5.2 Choice of the deltas

In the rest of the proof, given 0 < § < 1/2 we will need to fix J3,d2,d; satifying some
inequalities.

Lemma 3.5.2. Let vy := 4/ }izg, with k as in (3.2.1]). Since 0 < kK <1 we have 1 < < % ~

1.06. Let also o := 17_%, we have a € (0,1).

3
For any 0 < 6 <1/2 and any 01, 92,03 such that

0 > 01 > max (i&,éll_a?ﬁ(l +K/2) — m/2) ,03 = %5% Sy = o203 + (1 — a?)dy, (3.5.4)
—«

we have 0 < §3 < §g < 01 < 0, 01 > %(5, 303 > 0, 01 +353+I€((53 — 1/2) < 201, 20 < 99 + 303
and 20 — 02 < 281. Moreover, if we consider the lower bound on 01 as a function f(0), we have
f*(8) — 0 as k — oo, where f°F denotes the k-th iteration of f.
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Proof. 1t is clear that d3 > 0. From the fact that 0; > (1 + k/2) — k/2 and the expression of
03 we get 01 + 393 + k(3 — 1/2) < 2d;. Since k > 0 we have 363 > §. Since k < 1 we also have
03 < %\/25 < %5 hence 03 < d1. On the other hand from the definition of d; it is clear that
%5 < 1 < d because k > 0 and 6 < 1/2. Since 6; > 511:52 and since o < o2, the inegality
20 < d2+303 follows from checking that §(2—(14+«/3)v) < (1—«)d. The inequality 26 < do+393
implies the last one, 20 — 9 < 261, because it can be easily checked that 343 = §y < %5 < 263.
Finally, we may observe that f(J) < max(34, 11 —%0,6 — k/4) hence f °k(§) is decreasing and

tends to 0 as kK — oo. O

3.5.3 A LDP lower bound

We use Lemma [3.5.1] and the screening result of Lemma [3.3.8] to prove a first LDP lower
bound.

Proposition 3.5.3. Let 0 < § < 1/2 and zy € S be fized. Assume that a good control holds at
scale 0 and let us fiz 61,062,093 as in (3.5.4). For any P € Py ., (z)(X) we have

log B3 55, (B(P.2)) > —N2 750 (P) —log Ky 5

N out ( You F( You —
+R1 max log (Nout> (/ e BT (XT)+NUX t))alX"“t) +o(N%1). (3.5.5)

The maximum maxp, g, you is taken among { Ry, Ro} satisfying (3.4.1)) and (3.4.9) and with
N°" hetween 1 and N.

Proof. By definition of mf\(}’ 5.5, and IP’]% it is enough to prove
log/ e_ﬁ(wN(VEV)J’_Né(VN))dXN Z _N251fgleq(20) (P)
(in5,)  (B(Pg))

N out ( Yout ~( Yyout =
+ , max  log (Nout> ( / e AUFHXTIFNCX ”dxout) +o(N?1). (3.5.6)

Let Ry, Ry, N be fixed. Let Xout he o finite point configuration in C(z(, R2)¢ such that
Fout(Xout) g finite. Let E € Elec®™(X°") be a minimizer in the definition of FO". We claim
that there exists a set A** of N-tuples Xy such that Xy = X" on C(z}, R2)¢, that the energy
is controlled uniformly on A%! as follows

WN (V) € = (Wi (o) (P) + FOH (X)) + o(N?),

and that the volume of A'*! is almost optimal
QN ( ptot Meq(20) N 26
log Leb®™ (A™") > —ent[P|II"a'*)] 4 log Nou + o(N°1).

Step 1. Screening E. We may apply Lemma m to the point Conﬁguration Xout and the
electric field F, with = p;,. Let us check that the assumptions of Lemma are satisfied:

1. The first condition on Ry, R2 is satisfied by assumption (see (3.4.1)) and -

2. Since F Out(X out) is finite, (3.4.2) holds i.e. the smeared out charges at scale n; do not
intersect 0C(z(, R2).
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3. The third and fourth condition on N&" N™id follow from the fact that R; is a good
interior boundary.
From Assumptionwe know that ,u’eq =<1, and since we are blowing-up the configuration around
z € 2 the density My, is bounded below on C(zj, N %) by some m > 0 depending on z. We
deduce from (3.2.1)) that [pg, () — peq(v)| = N~*/2|z — y|*, hence we may chose C), = N~%/2 in
(3.3.6]).

By definition of a good exterior boundary (see (3.4.5)) we have fac(zé Ro) |E,, |2 < 2021082 N,
thus (3.3.7) is satisfied (for N large enough) as long as 20 < d2 + 3d3 (which is ensured by the
choice ([3.5.4))).

We obtain a family AY?" of point configurations such that the conclusions of Lemma m
hold.

Step 2. Generating microstates. Now we apply Lemma with R; as above and obtain a
family AR of point configurations with N8 points in C(z{, R1) together with screened electric
fields Elnt such that (3.5.1)), (3.5.2), (3.5.3) are satisfied.

Step 3. Gluing pieces together and bounding the energy. For any % € AWAM and Ct € Al

we form the configuration
ctot .— Ctran Cint +XOUt.
It is easy to check that C*°' always has N points. Indeed we know that
— By Lemma C'™t always has fC(z(),Rl) du’eq points
— By construction, C*™®" has N'a" = faC(Zé,RQ) Eyy = Jo (2 RaNC (24, 1) dpuy points.

— By integrating the compatibility relation of ¥ and X °“t, we get

Nout:N_ Em.ﬁ+/ d'u“/eq'
9C (2}, R2) C(z},R2)

If Etan and E'™ are the electric fields associated to C'® and C™* we also define
Etot Etran 4 Elnt + E]-C(z RQ)C

By construction the normal derivatives of E'™® and E™ coincide on dC(z{, R1) (they both
vanish), and the normal derivatives of E}*" and E), coincide on C/(z, Rz) for any n < (they
coincide for n; by construction, but since there are no points at distance < 71 of dC(z(, R2)
the value of the fields F, and Effan on OC(z}, R2) do not depend on n for n < n;). Thus E**
satisfies

1. —div E*" = 2x(C'** — pu/,,) in R?
2. E%* coincides with E on C(z), R2)¢. In particular E** belongs to Elec?, as E does.
3. The energy of E*! is bounded as follows

%ig%] ( o \EZO';\Z + Nlog n) < Fout(Xouty 4 N251WWLeq(ZO)(P) + o(N%1) as N — oc.
(3.5.7)
To show (3.5.7), let us split the energy of E'°t as

/ |Er** + Nlogn = (/ |En|2+N°“tlogn>
R2 C(Z{),Rg)c

+ (/ ’E7t7ran|2 +Ntran 10g77> + </ |E7i7nt|2 4 Ne&en 10g77> (358)
C(z),R2)\C (2, R1) Cl(z,R1)
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By definition of F"(X°u) and by the choice of E we have

L ou out [ you
57%13% (/C( . |E,|? + N tlogn) = [Fout(xout), (3.5.9)
Zov 2)¢
In view of (3.5.2]) we have
1 )
5 lim ( /C . |ENY|2 4+ N8 Jog n) < N'W,, 0y (P) + o(N?1). (3.5.10)
Zps4t1

Finally, the conclusions of Lemma combined with the control (3.4.5) and the fact that
C,, = N7%/2 ensure that

lim / |Etran|2 + Ntran 10g77 j N53N25—52 (log N)2 + N§1+3§3 NH(§3_1/2)
120 \Jo(p ROy R)

+ NOi+os log N.
The choice of d1, 02, d3 as in (3.5.4) yields
lim / |Efran|2 4 Nt logp | < N2, (3.5.11)
=0\ JC(2,R2)\C (2}, R1)

Inserting (3.5.9)), (3.5.10) and (3.5.11)) into (3.5.8)) yields (3.5.7)).
Now, using the minimality of local energy as stated in Lemma and the formula (3.2.3))

we conclude that

1 .. e
wN(Ctot) < % %IL% ( - |E:370t|2 + N10g77> < Fout(Xout) + NQJIWqu(ZO)(P)

+o(N*1) as N = co. (3.5.12)

Step 4. Volume considerations. For any X°' we let AtOt(X'O“t) be the set of point config-
urations C*°* obtained as above. Now, let A be a measurable set of finite point configurations
Xout with N points in C(z), Re)® such that Fout(X°ut) is finite for all X°U € A. We let At
be

Atot — U Atot (Xv'out)‘

Xout cA
Using the volume estimate (3.3.12]) we obtain, with the choice (3.5.4))
out en i N
log Leb®" (A™") > log Leb®""™" (A) + log Leb®""™" (A}") + o(N*") + log <N0ut Ntran Ngen>’

(where the last term denotes a multinomial coefficient). Using (3.5.3) and a straightforward
combinatorial inequality yields

out N
log Leb®N (A™Y) > log Leb®V™ (4) — N2 Ent[P|II™ea(%0)] 4 o(N?91) + log ( NM). (3.5.13)

This proves the claim made before Step 1.
Step 5. Conclusion. Combining (3.5.12)) and (3.5.13)), we obtain that

log / e~ 3PN (RN g %)

(i305)1(B(Pe))

N _1 out ( Yout ~( Yout Zou m 2 1
> log (Nout> </e FBE(XOM)HNC(XM) g ¥ t) — N2 (Ent[P|II eq o)] + 5,/,Jv\\/meq(ZO)(P))

+0(N251),
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for any choice of Ry, Ro and N°U as in the definitions and It yields (3.5.6)). O

3.6 Conclusion

3.6.1 Proof of Theorem

a. Good control at macroscopic scale

Lemma 3.6.1. Good control holds at scale 6 = é

Proof. Let zp € . Using (3.1.5) we see that

logIP’?V(wN()_('N) > NM) < —logKN”B +10g/6_g(NM+N§(XN))dXN.

Since wy is bounded below by O(N) (see Lemma(3.2.1) we have — log K g+log (f e‘gN&XN)> =
O(N) (which may depend on ), hence we get

logIP’]BV (wN(XN) > M) <N (—gM + O(l)) :

We deduce that for My large enough, limsupy_, . %logPﬁ,(wN(X’N) > Mp) < 0, which in

particular implies that lim supy_, ﬁlog P%(wN(XN) > M) for any 0 < %, thus we have

wy(Xn) = N with §-overhelming probability. Using (3.2.3) and Lemma we get for any
€ (0,1) that

lim [ |E]*+ Nlogn =5 N,
T]—>0 R2

which yields (3.1.8)), and we deduce (3.1.7) from the discrepancy estimates of Lemma O

b. Exponential tightness

Lemma 3.6.2. For any 0 < 0 < 1/2, if good control holds at scale § then ‘Bf\?ﬁ 5, is exponentially
tight (at speed N291) for any 29 € % and %6 < 6§ < 4.

Proof. Let zg € 3 and %(5 < 01 < 6 be fixed. The good control at scale §, combined with Lemma
implies that there exists C' > 0 such that the number of points in C(z}, N°) is bounded
above by C' N2 with 6;-overhelming probability. It implies that ‘Bf\‘}’ 8,61 is concentrated on the
compact subset

{P€P(X),EpIN(0, R)] < CR* VR >0},

with &;-overhelming probability, which ensures exponential tightness at speed N2, O

c. Proof of the theorem

Proof of Theorem|[I1l Step 1. Good control =—> LDP.
In this first step we claim that if a good control holds at scale ¢, then the LDP of Theorem

holds for 4; as in (3.5.4).
Indeed, comparing the right-hand side of (3.5.5) with the definition (3.4.27) of K ]/{,727 5, We

see that limy_oo N 2% log K ]ﬁv .5, exists and that the following weak large deviation principle
holds

lim lim N> log B3 ;5 (B(P¢)) = _f;”CCi(ZO)(P)— lim N~ log Ky, (3.6.1)

£—0 N—oo N—oo 2,017
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for any P € Py . (z) (), hence since Wy, .,(P) = +oo as soon as P is not of intensity
Meq(20), we may write (3.6.1) for any P € Py(X). By exponential tightness we obtain a full
large deviation inequality: for any measurable A C Ps(X) it holds

— inf F5®(P) — lim N~ log K,

PcA N—o0 2,01
< liminf N log B 5,5, (4) < limsup N log B 55, (4)
< — inf F)(P) — lim N2 1og KO . (3.6.2
< IirelA]:g (P) — Jim og Ky .5 (3.62)
In particular, taking A = Ps(X) we obtain
lim Nt log Ky = inf Fyea)(p), (3.6.3)

and inserting (3.6.3) into (3.6.2)) yields the LDP for {37} 55 }~ as stated in Theorem

Step 2. Good control = good control.

We now claim that if a good control holds at scale §, then it holds at scale §; with ; as
in . Combining the “good control upper bound” of Lemma and the lower bound
estimates which yield we deduce that

log B 5.6, (Ea1) X —MN** + O(N?),

where &)y is as in (3.4.20). In particular it implies that fC(z(),Nﬁ) |E717<(>)C|2 +N5210 log g =5 N2
for any &' < 61 and any ng € (0,1). We also have N;° <5 N?°! (since it was proven in Lemma
3.4.3| that (3.4.8) holds with d;-overhelming probability) hence in particular Nj? <5 N 201 for
0 < (51.

Step 3. Conclusion.

Combining both steps with the initialization of Lemma [3.6.1] and the conclusions of Lemma
:5.2] yields the proof of Theorem [T1] O

3.6.2 Proof of Corollary |3.1.4

Proof. We simply combine the fact that a good control holds at any scale 0 < § < 1/2 (which
follows from Theorem with Lemma m O

3.6.3 Proof of Corollary (3.1.5

Proof. We may split C(z), N°) into a family {C;}ics of squares of sidelength ~ N% with
#1 ~ N20=0)_ For any i € I we have, letting z; be the center of C; and D; the discrepancy in
Ci

/ F(dly — dple) = Dif (z) + / ((2) — f(z0)) (dvly — dpi).
C; C;

Since good control holds at scale § we have |D;| <5, N**/? (from the discrepancy estimates of
Lemma [3.3.5)) and fC(z(),Né) dvy <5, N?°. On the other hand fC(z(’),N5) dpigy < N (because g,

is bounded above). Moreover the mean value theorem yields |f(z) — f(2:)] < N ||V f||oo. We

thus have
S [ s i)

i€l

< N2(5751)N46/3||fHOO + NZ‘SN‘SIHVfHom
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hence we see that

N—26

/ F(d, — dpe)| =0 11V F]]oo N + |1 ]| N 2573,
C(zé,N‘s)

which concludes the proof since §; < 6. O

3.7 Additional proofs

3.7.1 Proof of Lemma

Proof. We may decompose E'°¢ as E™ 4+ E°U where E™ is the local electric field generated by
the electric system inside Cr, and E°" is the local electric field generated by the electric system
outside Cr,. We have

1 .
/ |Enoc|2_/ ‘E;]n2+/
CR2 Cr Cr

2 2

’E;)]ut’2 4 2/0 E717n . Egut_
Ro

Since the charges outside Cr, are at distance at least n; from 0CR, we may replace E;;“t by
E°" in the previous identity (in fact we have Ef,“t = E°" on Cj for n < n1). Integrating by
parts we obtain

loc|2 in in in — in t =
/ |E| :/ —HIAH +/ o E,]-n—i—/ HME - i
CR2 C'R2 8C’R2 8CR2

(up to additive terms which do not depend on 1 < 1), where H'™ is the local electric potential
generated by the electric system inside Cg,. By assumption we have H}?“ = H;;ll and E};“ = E;;I
on OCR,. Finally we see that

| AR B = [ (mpamy - mhan)
CRQ R2

for any n <y, and (3.3.2) is obtained as Lemma (¢f. the remark after the statement of
Lemma [3.3.1)). O

3.7.2 Proof of Lemma m

Proof. The neutrality of the system implies that the local electric potential H'°¢ decays like |z|~!
as |z| — oo in R? and E'°¢ decreases like |2|~2. If the right-hand side of is infinite then
there is nothing to prove. If it is finite, given M > 1 and letting yxas be a smooth nonnegative
function equal to 1 in Cj; and 0 at distance > 1 from C};, we may write

[oorlBal = [ xanlBy = B+ [ xarl By 2 [ (B, - BY) - B
R2 R2 R2 R2
> [ onlEEP 2 [ (B, - ) - (VHE
R2 R2
= [ lEpP 2 [ HEE, - B D
R2 R2

where we have integrated by parts and we have used the fact that E, E'°° are compatible with
the same configuration (hence div (£, — E}IOC) = 0). Letting M — oo, the last term tends to

0 by finiteness of the right-hand side of (3.3.5)),the decay properties of H'°¢ and E'°¢ and the
decay assumption on E. O
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3.7.3 Auxiliary estimate for screening

Lemma 3.7.1. Let | > 0 and let H be a rectangle of R? with sidelengths in (1/2,31/2). Let
g € L2(0H) and let m be a function on H of average mq := |1ﬁ\ Sz m such that

—27rm0|H|—/ g. (3.7.1)
oH

Then there exists a solution h to —Ah = 2wm in H with Vh -7 =0 on 0H satisfying

/ VA <1 / 1912 + 4]} — o2 i
H OH

Proof. A solution exists thanks to the compatibility condition (3.7.1). We may split h as hy + ha
where h; solves
—Ahy =2mmg in H, Vhy- -7 =gon0H,

and ho is the mean zero solution to
—Ahg = 2m(m —mg) in H, Vhy-7i=0on dH.

In view of [RS15, Lemma 5.8] we may find h; satisfying

/|Vh1\251/ 92 (3.7.2)
H oOH

/H|Vh2\2 < 14][m — o] Boo gz (3.7.3)

Indeed it is easy to check that (3.7.3]) holds when [ = 1, and the general case follows by a scaling
argument.
Combining (3.7.2)) and (3.7.3|) concludes the proof. O

We also claim that
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4.1 Introduction

4.1.1 General setting
a. Logarithmic, Coulomb and Riesz interactions.

We consider a system of points (which we can think of as being point particles carrying a
positive unit charge) in the Euclidean space R? interacting via logarithmic, Coulomb or Riesz
pairwise interactions

g(z) = —log|z|, in dimension d = 1, (4.1.1)

g(z) = —log|z|, in dimension d = 2, (4.1.2)
or in general dimension

g(z) = o max(0,d —2) < s <d. (4.1.3)

Cases (4.1.1)) and (4.1.2)) are known as one- and two-dimensional log-gases, and we will refer
to them as the “logarithmic cases”. One-dimensional log-gases have been extensively studied
for their connection with important random matrix models known as the [-ensembles (see
[For10]). The two-dimensional log-gas is known in the physics literature as a two-dimensional
one-component plasma (see [AJ81]) and can also model non-Hermitian random matrices such
as the Ginibre ensemble |Gin65|. The cases correspond to higher-dimensional Coulomb
gases (if s = d — 2) or Riesz gases.

The statistical mechanics of N points (x1, ...,z ) interacting pairwise via g under a confining
potential V' at inverse temperature 5 € (0, +00) is given by the canonical Gibbs measure

1 - . Ti—X4 N N VCCZ‘
ron oy om (St VI V)

dl‘l N da:N,
ZN,p

where Zy g is a normalizing constant. The macroscopic behavior i.e. the behavior of the
empirical measure puy == + SN | 8., is well studied in the limit N — oo, see e.g. [Serl5] and
the references therein. The limiting macroscopic arrangement is described by the equilibrium
measure fieq, Which is a probability measure on R?, depending on V, with compact support ¥,
such that {un}n converges weakly to pieq, Py g-a.s.

In order to study the microscopic arrangement of the particles, Sandier-Serfaty have derived
in [SS15b] (see also [SS15a], [RS15], [PS15]) a second-order energy functional Wy which governs
the fluctuations around jieq, together with an object W defined on infinite point configurations
which is the limit of W as N — oo in the sense of I'-convergence of functionals (see [Ser15]). Let
ol = NV, vh .= SN 5, and let tieq be the push-forward of fieq by = +— Nz, The “blown-
up” point configuration v}, encodes the position of particles at the microscopic (inter-particle)
scale N~1/4_ We let

Wn(z1,...,zN) = % // ) g(x — y)(dvy — dpg,(z) @ (dvy — du,(y)), (4.1.4)

where A is the diagonal. It can be seen that Wy computes (up to the factor +-) the Coulomb/Riesz
interaction of the electric system made of the finite (charged) point configuration v}, and of a
negatively charged background of density duéq, with itself, without the infinite self-interactions
of the charges because the diagonal A is excluded.

An integration by parts shows that Wy may be re-written with the help of the associated
electric field B¢ := Vg * (v} — feq), Whose norm is computed in a renormalized fashion to
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take care of the singularities around each charge (we will come back to this procedure in Section
4.3.1)).

Following the same procedure, a renormalized energy functional W is defined on the space of
electric fields corresponding to infinite point configurations together with a uniform background
of intensity 1. If C is a point configuration, its Coulomb/Riesz energy W(C) is then defined as

W(C) = inf W(E),

where the infimum is taken among the set of electric fields F which are compatible with C.
Finally if P is a random point process (a probability measure on point configurations) its energy
is defined by

welee(p) := Ep[W].

We refer to Section [4.3.1] for more details. The superscript “elec” is added by us and refers to
this “electric” approach to the definition of a Coulomb/Riesz energy.

b. Free energy at microscopic scale.

In [LS15] S. Serfaty and the author have obtained a second-order (or process level) large
deviation principle concerning the average microscopic behaviour of the particles under the
canonical Gibbs measure at inverse temperature § € (0,400). This behaviour is characterized
by a certain random point process P (the law of a random point configuration) and it amounts
to minimizing a free energy functional of the form

F5(P) := BW(P) + ent[P|II] (4.1.5)

on the space P, 1(X) of translation-invariant random point processes whose mean density of
points is 1. The term ent[P|II] denotes the specific relative entropy of P with respect to the
Poisson point process of intensity 1 on R¢, it is the infinite-volume analogue of the usual relative
entropy.

From a physics perspective, knowing the minimizers of the free energy and how they behave
as 3 varies allows one to retrieve some of the thermodynamic properties of the physical system at
the microscopic scale (e.g. the existence of phase transitions). From the random matrix theory
point of view, it was proven in [LS15] that an important family of point processes governing the
microscopic behavior of eigenvalues, namely the Sineg processes of Valko-Virag (see [VV09]),
minimizes 3 for # > 0. Hence it would be very useful to have information on Fg, its level sets
and its minimizers (depending on ). A drawback of the free energy Fp is that computing it
explicitly is hard. The energy term in particular is difficult to evaluate and except for the case
of periodic configurations (for which exact formulas hold) no value of W is known and the mere
finiteness of W(C) for a given point configuration C is unclear in general (see however [GS13] for
some criteria). On the other hand, level sets of W are easily seen to be degenerate because small
perturbations of any given configuration C typically do not change its energy. Concerning both
issues, it turns out to be helpful to look for a definition of the energy directly at the level of
stationary random point processes instead of averaging the energy computed configuration-wise.

c. The approach of Borodin-Serfaty.

In [BS13] a related notion of a renormalized energy for random point processes was introduced
in the logarithmic setting and . Given a stationary random point process P,
Borodin and Serfaty proceed by periodizing the point process induced in a square (or interval)
of sidelength R and computing its renormalized energy by the mean of explicit formulas valid



160 CHAPITRE 4. LIMITES DE HAUTE ET BASSE TEMPERATURE

in the periodic setting. If (ay,...,ay) is a configuration in a torus T of volume N in R?, the
associated periodic point configuration has an energy

2 1
W(al, ce ,aN) = % Z Gper(ai — aj) + 03,3 il_r)% (Gper(x) + chd(x)> 5
i#j 8

where cq s is a constant and GP®" is a certain periodic Green function which has a logarithmic
singularity at 0. Taking the expectation under P, using an expansion of GP® and sending
N — oo they obtain an energy WPS(P) (our notation) which may be written, up to an additive
constant, as

WES(P) = [ ~loglul(pp() - 1) (4.16)
Rd

where po p denotes the two-point correlation function of P, which can be seen as a function of
one variable by stationarity (we abuse notation and let pa p(v) := p2 p(0,v)). Using this explicit
expression in terms of ps p, they are able to compute the energy WBS for some specific point
processes (e.g. the Sineg processes for § = 1,2,4, and the Ginibre point process) as well as
to solve minimization problems (the minimization of WBS over a large class of determinantal
point processes). However no general rigorous connection is drawn between WBS and the electric
definition We' which derives from the energy functional Wy. Moreover the formulas of [BS13]
only apply to random point processes for which pg p(z,y) —1 decays fast enough as |z —y| — oo.
The approach of the present paper is strongly inspired by the one of [BS13] and is an attempt
to give a partial connection between WBS and Welee,

4.1.2 Main results

The purpose of this paper is twofold. First we introduce an energy Wt (“int” as “intrinsic”)
defined on Py 1 (X) which is expressed only in terms of g and of the two-point correlation function,
and we connect W™ with Wee°, In a second part we use W™ to handle the energy term in Fs,
which allows us to describe the behavior of minimizers of Fj3 in the limiting cases § — 0 (in any
dimension) and 8 — oo (in dimension 1).

a. New definition of the Coulomb/Riesz energy.

If P is a stationary random point process of intensity 1 and p p denotes its two-point corre-
lation function, we define in Section its “intrinsic” energy (with respect to the interaction

g) as

W(P) = i inf //C , S oa(ey) — Vi
where Cpg is the hypercube [—%, g]d. An equivalent formulation is
- 1 d
W(P) = i inf /[R,R]d\{o}‘q(”)(mf(”) IR e, )
where v = (v1,...,v4) and where we made again the abuse of notation ps p(v) := p2 p(0,v).

The expression (4.1.7) shows similarities with (4.1.6]) in the logarithmic cases.
Let us also define, in the logarithmic cases

1
D°8(P) := C'°8 lim sup (Rd // (p2,p(z,y) — 1)dzdy + 1) log R, (4.1.8)
Tk

R—o0
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where C°8 is a constant whose value is irrelevant for our concerns.
Finally we introduce the free energy functional analogous to F3 (defined in (4.1.5))

Fy = BW 4 ent]-|T1)

or in the logarithmic cases
Fjy = B(W™" + D'°8) 4 ent[:|TI].

Let us recall the following definition: let X be a topological space and f,g : X — R two
functions. We say that g is the lower semi-continuous regularization of f if for any x € X we
have

g(z) = liminf f(y).

Yy—x

Our first main result is

Theorem 12. The functionals W and W are related as follows.

— In the one-dimensional logarithmic case , Welee js the lower semi-continuous reg-
ularization of W™ 4+ D8 and for any 8 € (0,400), Fg is the lower semi-continuous
reqularization of Fj.

— In the non-Coulomb cases {A.1.3) with s > d — 2, W is the lower semi-continuous
reqularization of Wit and for any 8 € (0, +o0), Fp is the lower semi-continuous regu-
larization of F.

— In the two-dimensional logarithmic (Coulomb) case , we have

Welec < Wint + Dlog
— In the higher dimensional Coulomb cases (4.1.3)) with s = d — 2, we have
Welec < Wint.

A first interest of Theorem [I2]is that it provides a way of showing that a given random point
process has finite energy. For example in the d = 3 Coulomb case, the Poisson point process of
intensity 1 is easily seen to satisfy W"*(IT) = 0, hence W¢*¢(IT) is finite and nonpositive.

Let us emphasize that Theorem is less precise in the Coulomb cases than in the cases
(4.1.1) and (4.1.3) with s > d — 2, to which we will henceforth refer as the “non-Coulomb cases”.

In the following statement, by saying that two minimization problems are equivalent we
mean that both functionals have exactly the same infima. If g is the lower semi-continuous
regularization of f on X, then the minimization problems associated to f and g are equivalent,
thus

Corollary 4.1.1. We deduce from Theorem [13 that in the non-Coulomb cases
1. Minimizing W on P 1(X) is equivalent to minimizing W (or Wint1-DI8 ) on Py 1 (X).

2. For any € (0,4+00), minimizing Fz on Ps1(X) is equivalent to minimizing fé on
Psa(X).

b. Applications.

We use the explicit expression of W™ and its link with Wel*¢ to perform simple computations,
which allow us to prove the following two results concerning the minimization of F5 in the limit
8 — 0and 8 — oo.
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High-temperature limit. As can be expected, when 8 — 0 any minimizer of Fjz gets
close to the minimizer of the entropy term.

Theorem 13. For all cases (4.1.1)), (4.1.2), (4.1.3)), the minimizers of Fg converge as B — 0 to
the law of the Poisson point process I1. Moreover this convergence holds in entropy sense i.e.

lim sup ent[Pg|II] = 0. (4.1.9)
=0 Fg(Pg)=min Fg

In the special case of one-dimensional log-gases, as proven in [LS15] a minimizer of Fj3 is the
Sineg process of Valko-Virag [VV09]. Hence our method yields another proof for a recent result
of Allez and Dumaz [AD14]:

Corollary 4.1.2. As 3 — 0 the Sineg point process converges weakly in the space of Radon
measure (endowed with the topology of vague convergence) to the law of a Poisson point process
on R.

Low-temperature limit. In dimension 1 we may also characterize the limit 5 — oo (the

low temperature limit) of the minimizers of Fg. We let Pz be the stationary random point
process associated to the lattice Z

1
PZ ::/ (5x+Z dl’, (4.1.10)
0

which can also be seen as the law of the point configuration w4+ Z where u is a uniform random
variable in [0, 1] and where we let = + Z denote the point configuration {z + k, k € Z}.

Theorem 14 (Crystallization for d = 1). For d = 1 and in both cases (4.1.1]) or (4.1.3)), the
random point process Py is the unique minimizer of W on Py 1(X). Moreover if {Ps}g is a
family of minimizers of Fg, we have

lim P = Py.
oo P E

Theorem [T4)is a crystallization result, proving the convergence to the one-dimensional crystal
as  — oo. A similar result was proven in the one-dimensional logarithmic case in [Lebl5c| by
using the explicit expression available in the periodic setting together with an approximation
by periodic point processes. The method here is similar in spirit but follows a simpler approach
which works for Riesz cases as well.

4.1.3 Open questions

Let us now briefly mention some questions that are raised by, or related to our present study.

a. Minimizers of Wt,

Could one determine the infimum of W™ (thus of W in the non-Coulomb cases) thanks
to its explicit form? A necessary condition on the realizability of ps as a two-point correlation
function of some stationary random point process of intensity one is that T5 := py — 1 satisfies

T2 > _17 @ > _17
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(see [KLSO7, Section 2]) where T, denotes the Fourier transform of T (in a sense that should,
in general, be precised). Thus we may start by asking whether the linear optimization problem
of minimizing

d
liminf/ Ts(v)g(v (1—‘7)”) dv
e PO I (1

R—o00 =1

can be solved on the convex set {1y > —1, T, > —1}. Tt is unclear to us whether the symmetry
of the constraints on T5 and T; might be of any use (however let us observe that the two-point
correlation function of Py is its own Fourier transform, and that the expected minimizer in
d = 2, namely the stationary random point process associated to the triangular lattice, exhibits
a self-duality of the same kind).

b. Decorrelating random point processes.

We may also investigate the problem of minimizing W' over particular sub-classes of
Ps1(X). We have already mentioned the work of [BS13] where this minimization is consid-
ered over determinantal point processes in dimension d = 1,2. Another interesting aspect is
that of “decorrelating” random point processes. Let us say that P is a decorrelating random
point process (or that P decorrelates) when Ta(v) := pa(v) — 1 tends to 0 as |v| — oo, with some
speed criterion to be fixed, or when T3 lies in some reasonable class (e.g. LP-spaces). It is unclear
to us whether there is a minimizing sequence for W made of random point processes which
decorrelate. A negative answer would hint at a soft kind of phase transition as 3 varies. Indeed
as # — 0 the minimizers of Fg converge to the law of a Poisson point process IT (according to
Theorem , which is a typical decorrelating random point process, and as  — oo they would
rather leave this class.

The 1d Log-gas case. Such a transition may be formally observed in the one-dimensional
logarithmic case. Let us recall that for d = 1, s = 0 there exists a “concrete” family of minimizers
for F stemming from Random Matrix Theory (RMT), namely the Sineg processes. They arise
as the N — oo limit of microscopic point processes observed in the so-called “Gaussian (-
ensembles”, which are a generalization for any S of the classical Gaussian ensembles of RMT
(see [DEO2| and [VV09]). It is known (see [Nakl4]) that Sineg is also the law of the limiting
microscopic point process for the “Circular S-ensemble”, which is another RMT model. The
N — oo limit for two-point correlation function of the Circular S-ensemble has been derived in
[For93] for even values of 5. Equation [For93, (11a)] should thus describe the large-z asymptotics
of the two-point correlation function of Sineg, i.e. formally we have

B/2
a2
T3 Sines (T) = p2,8iney (2) — 12 > fu(z)z /8
k=1

where fi() is a slowly oscillating function. The leading term of 75 gine, () as z — oo is of order
2748 we would thus expect T’ Sine; to leave the class LP as soon as 8 > 4p.

Decorrelating random point process of minimal energy. A negative answer would
also raise the question of finding the minimizer (or a minimizing sequence) for W™ among
decorrelating random point processes. It seems to us that a good candidate for a lower bound
on the energy is given by the hypothetical “hardcore Poisson point process” I}, whose two-point
correlation function would be pa1,c =1 — 1p where B is the ball of center 0 and unit volume in
R?. In dimension d = 1 it is not hard to construct a sequence of random point processes whose
energies converge to the associated energy [ plog|v]. In arbitrary dimension, it easy to see that
any sub-Poissonian random point process (i.e. a random point process such that ps < 1, e.g.
any determinantal point process) has a larger energy than ITj..
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c. Plan of the paper and ideas of proof.

In Section we give some general definitions and notation.

In Section we recall the definition of the renormalized energy in the sense of [SS15b],
[RS15], [PS15], then we introduce the alternative object Wit defined on the space of random
point processes, and in the stationary case we give a simple expression of W™*(P) in terms of
the two-point correlation function of P.

In Section we give some preliminary results. In particular we observe that while We is
by definition computed in terms of the energy of global electric fields defined on the whole space
R * the object W is rather a limit as R — oo of the energy of local electric fields defined on
hypercubes of sidelength R.

Section is devoted to the proof of Theorem [I2l The proof goes in two step: first we
show that Welee < Wint (or Wint 4 Dlog in the logarithmic cases) on the space Ps (&), then
conversely (in the non-Coulomb cases) for any P € P, 1(X') we prove the existence of a “recovery
sequence” { Py} converging to P and such that limy_,o, W (Py) < Wele¢(P). In both steps
the key element is the screening lemma of [PS15] (following [SS15b], [SS15a], [RS15]) which,
heuristically speaking, allows us here to construct a global electric field from a local one, and
vice Versa.

In Section we prove Theorem [13] about the convergence to the law of the Poisson point
process IT of minimizers of F3 as 8 — 0. If Wele¢(TI) is finite we may see directly that ent[Ps|TI]
must go to zero as f — 0, and then the specific Pinsker inequality implies that Pz — II as
B — 0. However in some cases the finiteness of We°¢(TI) is false (e.g. d = 1,5 = 0, see [LS15])
or yet unknown (d = 2, s = 0). We use the fact that Wele® < Wint 1 DIos to construct a sequence
of random point processes converging to IT in entropy sense and whose renormalized energy is
finite.

In Section we restrict ourselves to the one-dimensional cases (4.1.1]) or (4.1.3)) and we
prove the crystallization result of Theorem We start by using a convexity argument to show
that Py is the only minimizer of W™ over Pg(X). More precisely we obtain a quantitative
bound below on Witt(P) — Wint(P;) in terms of the two-point correlation function of P. This
translates into a bound below for Wee¢(P) — Wele¢(P;) which implies that Pz is also the only
minimizer of W, Moreover as 3 — oo we show that We¢(Pg) must go to We°¢(Py), which
in turn implies that as 8 — oo the two-point correlation function of Pg converges to ps p, in the
distributional sense. Thanks to the “rigidity” of the lattice it is not hard to deduce that in fact
Py converges to Pz as 3 — 0.

Aknowledgements. The author would like to thank his PhD supervisor, Sylvia Serfaty,
for helpful discussions and many useful comments on this paper.

4.2 Definitions and notation

4.2.1 Generalities

If (X,dx) is a metric space we let P(X) be the space of Borel probability measures on X
and we endow P(X) with the distance

dP(X) (Pl, PQ) = sup {/F(dpl — dP2)| F e Lipl(X)} , (4.2.1)

where Lip; (X) denotes the set of functions F' : X — R that are 1-Lipschitz with respect to dx
and such that |[F|[cc < 1. Tt is well-known that the distance dp x) metrizes the topology of
weak convergence on P(X). If P € P(X) is a probability measure and f : X — R% a measurable
function, we denote by Ep [f] the expectation of f under P.
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The ambient Euclidean space of dimension d is denoted by R%. We will often need to work
in R™* where k = 0 (in the case of Coulomb interactions) or 1 (see Section .

For any R > 0 we denote by Cg the hypercube [~R/2, R/2]% ¢ R? and by Cg the hypercube
[—R/2, R/2)* ¢ R¥F. Similarly we let Bg be the ball of center 0 and radius R in R and Bg
be the ball of center 0 and radius R in R4**.

If Ais aset, we let A := {(z,z),r € A} C A x A be the diagonal of A.

4.2.2 Point configurations and random point processes
a. Point configurations.

If Ais a Borel set of R? we denote by X (A) the set of locally finite point configurations
in A or equivalently the set of non-negative, purely atomic Radon measures on A giving an
integer mass to singletons (see [DVJ88]). We will often write C for 3 . d,. We endow the set
X := X(R%) (and the sets X' (A) for A Borel) with the topology induced by the topology of weak
convergence of Radon measure (also known as vague convergence or convergence against com-
pactly supported continuous functions), these topologies are metrizable and we fix an arbitrary
compatible distance.

The additive group R? acts on X' by translations {0;},cpa: if C = {z;,i € I} € X we let

Gt-C:: {wi—t,’iEI}.

We denote by N : X — N the number of points of a configuration in the hypercube Cg,
and by Dp the discrepancy Dr = Ny — R%.

b. Random point processes.

A random point process is a probability measure on X. We denote by Ps(X) the set of
translation-invariant (or stationary) random point processes. We endow P(X’) with the topology
of weak convergence of probability measures on X'. A compatible distance on Py(X') is defined

in (121

Remark 4.2.1. Another natural topology on P(X) is the “convergence of the finite distributions”
[DVJ0S, Section 11.1], also called the “convergence with respect to vague topology for the counting
measure of the point process”. The two notions of convergence coincide as stated in [DV.J0S,
Theorem 11.1.VII].

We will use several times the operation of averaging a random point process over translations
in some measurable subset. If P is a random point process in R% and K a measurable subset
of R? with finite, non-zero Lebesgue measure, we define the average PR of P over translations
in K as the law of the random variable ux + C where ug is uniformly distributed according to
the normalized Lebesgue measure on K, and C has law P. The sum of a vector and a point
configuration is defined as the point configuration

v+ C:={z+ppel}

c. Hyperuniformity.

Following [TS03| we say that a random point process P is hyperuniform if we have

Ep[Df] = O(R™).
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For a stationary one-dimensional random point process P, hyperuniformity is easily seen to
be equivalent to the following property: for some r > 0, there are P-a.s. between k—r and k+r
points in any interval of length k.

4.2.3 Correlation functions

Let P € P(X) be a random point process. For any n > 1 the n-point correlation function
pn,p is the linear form on (a subspace of) the linear space of bounded measurable functions
©n : R — R with compact support defined by (we abbreviate “p.d.” for “pairwise distinct”)

pn.p(on) =Ep Z On(T1,. .y xn).
z1,...,2n€C p.d.
If the n-point correlation function exists as a distribution and can be identified with a measurable
function, we will write [ p, pp, instead of p, p(¢n). Heuristically speaking, the one-point
correlation function p; (also called the intensity of the random point process) gives the density
of the process at each point, while the two-point correlation function pa(z,y) gives the probability
of having a point both at x and y. In this paper we will work with stationary random point
processes such that p; = 1 and we denote by Ps 1(X) this set.

4.2.4 Dimension extension

We recall some elements from [PS15] to which we refer for more details. Outside of the
Coulomb cases the Riesz kernel g is not the convolution kernel of a local operator, but rather
of a fractional Laplacian. It can be transformed into a local but inhomogeneous operator of the
form div (|y|YV-) by adding one space variable y € R to the space R%. In what follows, k will
denote the dimension extension. We take & = 0 in all the Coulomb cases, i.e. s = d — 2 and
d>3or and in all other cases we take k = 1. We use an auxiliary parameter v defined
by

vyi=s—d+2—k

where the convention is to take s = 0 in the logarithmic cases. In particular we have v = 0 in
the logarithmic cases (where k = 1) and (where k = 0).

Points in the space R¢ will be denoted by z, and points in the extended space R** by
X = (z,y), z € RY y € R¥. The interaction kernel g is naturally extended to R4**. We
will often identify R? x {0} and R?. The measure dga is the Radon measure on R4** which
corresponds to the Lebesgue measure on the hypersurface RY ¢ RF,

Finally we let cqs be the constant depending on d, s, such that —div (|y|"Vg) = ¢q,s00 in
RI*F (the values of cq s are given in [PS15]).

4.2.5 Electric fields and random electric fields

Let p < ‘Zi’f be fixed. We think of the space LfOC(R‘Hk ,R¥F) as the space of electric fields

generated by the charged particles together with a certain uniformly charged background and
we endow this space with the weak LP topology.

a. Local electric fields.

If C is a finite point configuration and R > 0 we let

B°(C) = g * (C — 1oplpa), E(C) := VO = ¢4, Vg* (C— 1c,0pa). (4.2.2)
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where g% denotes the convolution (computed in R*) with the interaction kernel g. It implies
that

—div (Jy["E") = ¢4.sVg * (C — 1 0pa). (4.2.3)

The scalar field ®'°° physically corresponds to the electrostatic potential generated by the
point charges of C together with a background of density . The vector field E'°° can be thought
of as the associated electrostatic field. It is easy to see that E'°° fails to be in L120c because it

blow ups like |2|~(**1) near each point of C, however E'°° is in L (RITFk RI+K),

b. Electric fields.

We now introduce a special class of vector fields that correspond to electric fields generated
by a system made of an infinite point configuration C and a negatively charged background in
all R%. We let Elec be the class of “clectric vector fields” i.e. the set of vector fields E belonging
to L (R4k RITF) that satisfy

~div (|y|"E) = ¢4, (C — dga) in RITE (4.2.4)

where C € X(RY) is a point configuration. We say that E is compatible with C if (4.2.4) holds.

If FE is in Elec we let
-1

Cd,s

Conf(FE) = div (Jy|"E) + dpa

be the underlying point configuration C, in other words E is compatible with C if and only if
Conf(E) =C.

c. Truncation procedure.

The renormalization procedure of [RS15], [PS15] (inspired by the original work of [BBH94])
uses a truncation of the singularities which we now recall. We define the truncated Riesz (or
Coulomb, or logarithmic) kernel as follows: for 1 > 7 > 0 and X € R¥F | let

fn(X) = (9(X) —g(n) 4

with a slight abuse of notation: since g is a radial function we write g(n) for the value of g at
any point on a sphere of radius 7.
If £'°¢ is a local field as in (#.2.2) we let

EP¢(X) = E"(X) = > _ V(X —p). (4.2.5)
peC

Similarly if E is an electric field as in (4.2.4) we let

Ey(X):=E(X)=>_ V(X -p). (4.2.6)
peC

d. Random electric process.

A probability measure on P(LY (R¥* RI+*)) concentrated on Elec is called a random elec-
tric process. We say that P is stationary when it is invariant under the (push-forward by)
translations E +— E(- — x) for any z € R%.
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4.2.6 Specific relative entropy

Let P be a stationary random point process on R%. The relative specific entropy ent[P|TI] of
P with respect to I, the law of the Poisson point process of uniform intensity 1, is defined by

. 1
ent[P|I] := lim mEm <P|CR|H|CR) 7
where P, denotes the random point process induced in Cg, and Ent(:|-) denotes the usual
relative entropy (or Kullbak-Leibler divergence) of two probability measures defined on the
same probability space. We take the appropriate sign convention for the entropy so that it is
non-negative: if p, v are two probability measures defined on the same space we let Ent (pu|v) :=
[ log %dﬂ if p is absolutely continuous with respect to v and +o0o otherwise. We have in fact
by super-additivity
1
ent| P|II] = sup ——Ent ({ P, |11 . 4.2.7
[PITY = sup Ent (Fo e (42.7)
The functional P +— ent[P|I1] is affine lower semi-continous on Ps 1 (X') and its sub-level sets are
compact. We refer to [RAS09, Chap. 6] for a proof of these statements.

4.3 Definitions for the energy of a random point process

In this section we recall the derivation of a renormalized energy for random point processes
from (4.1.4) then we introduce our alternative definition of a (logarithmic, Coulomb or Riesz)
energy for random point processes.

4.3.1 The electric approach

a. Renormalized energy of an electric field.

We now recall the computation of the remormalized energy W(E) following [PS15] (see
also [Ser15] and the references therein). For any E € Elec we define

1 1
Wi (FE) = limsu / NE,|* - )
n(E) p<cdﬁst . Y7 Ey] g(n))

R—o00

where E, is the truncated field as in (4.2.6]), and we let

W(E) := lim Wy (E).

For convenience we have chosen a definition of WW which differs from a multiplicative constant
cd,s from the one in [PS15].

b. The electric definition.
We then define
W, (C) =inf W, (E), W(C) =inf W(E),

where both infimum are among electric fields F compatible with C. Similarly if P is a random

point process we let
W5*“(P) = Bp [Wy], W(P) = Ep[W]. (4.3.1)

The following lemma was proven in [LS15]:
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Lemma 4.3.1. Let P be a stationary random point process such that W'*¢(P) is finite. Then
there exists a stationary random electric process P°® such that the push-forward of P¢ by
Conf is equal to P and which satisfies

EPelec [W] == Welec(P).

We also have the following lower semi-continuity result for the electric energy. Let us em-
phasize that lower-semi continuity only holds at the level of stationary random point processes,
and not for point configurations or arbitrary random point processes.

Lemma 4.3.2. The maps P +— W%IQC(P) and P +— We(P) are lower semi-continuous on
Psi(X).

Proof. See e.g. [PS15, Lemma 4.1.] O

This provides a definition for the energy of a random infinite point configuration with a
uniform negative background. However the computation of We¢(P) or of W(C) (or even the
search for an upper bound on these quantities) appears involved in general because it amounts
to finding compatible electric fields for infinite point configurations. Let us mention that in the
case of a periodic configuration (hence also for the stationary random point process associated
to it) exact formulas are known in the cases (see [SS15b]), (see |SS15a)), for
the higher-dimensional Coulomb case with s = d — 2 (see [RS15]) and for Riesz gases
(see [PS15]).

4.3.2 The intrinsic approach

In this section we define an energy functional W™ on the space of random point processes,
using only the nature of the pairwise interaction.

If A, B are two (measurable) subsets of R? we define Int[A, B] as the interaction energy
between A and B

Int[A, B( // 1o S () ) (dC(y) — ). (4.3.2)

In view of (4.1.4] - for any R > 0 we define HI' : X(Cr) — R as the interaction of Cr with
itself (the diagonal being excluded) i.e. Ht := Int[C’R, CRr| or in other terms

pin( //(\J 2 y)(dC — dz) ® (dC — dy).

Given a random point process P, a natural way of defining the energy (per unit volume) of P
is the following:

Definition 4.3.3. Let P be a random point process of intensity 1. We define its intrinsic energy
Wint by
- 1
nt(p):=liminf —Ep [HEY(C)| . 4.3.
WH(P) im inf —5 p[H (C)} (4.3.3)

a. Expression with correlation functions.

The energy defined by can be re-written with the help of one- and two-point correla-
tion functions of P. In order for the expression to make sense, we restrict ourselves to random
point processes whose two-point correlation function exists as a Radon measure in R? x R?. We
will then abuse notation and consider py as a function instead of a measure, writing ps(x,y)
instead of dps.
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Lemma 4.3.4. For any random point process P of intensity 1 such that ps exists as a Radon

measure, the following identity holds
Wint(p) = hm mf — // gz —y)(p2(x,y) — 1)dady.
Cc? \A

Proof. First we may re-write H5*(C) as

Hint( //O 2 )(dC — dz) ® (dC — dy)

:// gz —y)(dC ®dC) + // (x —y)(dr ® dy) —2//
C2\A C2\A C2\A

and by definition of the correlation functions (see Section we get

(4.3.4)

y)dC & dy

mt // gz —y)p2(z,y d:vdy+// y)dxdy — 2// g(x —y)p1(z)dxdy.
Cc? \A CZ\A

By assumption P has intensity 1 i.e. p1 = 1 and we are left with

]% [Hmt Rd //C?\A x —y)(p2(z,y) — 1)dzdy,

which yields (4.3.4)).

b. The stationary case.

If the random point process P is stationary we may derive a somewhat simpler expression for

Wint(P). In what follows pa(v) stands for p2(0,v). The change of variables (u,v) =

gives

(x+y,z—y)

1
// g(x—y)(p2(z —y) — 1)dzdy = 2d/ / g(v)(p2(v) —1)dudv
([=R/2.R/21)2\A ve[~R,RIN\{0} Ju€eSr(v)

- / IS()lg@)(p2(v) — L)do,
vE[—R,R]d\{O}

where Sr(v) denotes the set
Sr(w) ={z+y:x2,y € Cr, x —y =0}
The Lebesgue measure |Sg(v)| of Sr(v) is easily computed for v = (v1,...,vq)

[Sr(vi,...,v 4 % H — |vg).

Indeed we have Sp(v) = {2z —v:z,y € Cr,x —y = v} which implies that
|Sr(v)| =2 x {z € Cr,z —v € Cr}|,

moreover Sg(v) tensorizes i.e. if v = (v1,...,vq) € [-R, R]? we get

d
[Sr(v1, . va)| = 27 [T {wi € [=R/2, R/2), 2 — vi € [-R/2, R/2}]

(4.3.5)

which leads to (4.3.5)). Finally we obtain the following expression for any P in P, (X) (such

that py is a Radon measure)

. 1 d
Wt (P) = lim inf — / g(v v
(P =1l [ R,RJ9\{0} D IR = e

—00
=1

(4.3.6)
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4.4 Preliminary results on the energy

4.4.1 VLocal field and local interaction

Let R > 0 and let C be a point configuration in X'(Cr). The local electric potential (resp.
field) ®'°¢ (resp. E'°°) are defined in ([#.2.2)). For n € (0,1) we let also E}Yoc be as in (4.2.5). Let
us recall that Cr denotes the hypercube [—R/2, R/2]%tk.

Lemma 4.4.1. The following inequalities hold
1. In the cases (4.1.3))

/RM Y17 ER°l> — Nrg(n) < HE'[C] + Nroy(1). (4.4.1)

Cd,s
2. In the logarithmic cases

1

[ | EXC) — Nrg(n) < HE'[C] + C'°®Dylog R + Ngoy(1)
R

d,s

+OWER™®) +op(1). (4.4.2)

Let P be a stationary random point process of intensity 1 such that Ep[D%] = o(R*®). The
following inequalities hold

1. In the cases (4.1.3)

1
Cd,s

Ep [ /RM Y| B> — Nrg(n)| < Ep[HE']+ Rlo,(1). (4.4.3)

2. In the logarithmic cases

< Ep[Hp'] + C'*®Ep[D}]log R + R0, (1)

S

1
Ep [ / ly["| B2 — Nag(n)
C Cr

+op(1). (4.4.4)
The terms oy(1),0r(1) depends only on d, s.
Proof. The starting point is the following identity which holds for any S > R

HIBY[C] = lim ( !

0% Eloc 2 _N + / 'yq)locEloc . ﬁ, 4.4.5
i (1 [ i - Mgt W (1.45)

Cd,s 8Bs

where 77 denotes the unit normal vector. It results from two different operations. Let us first
recall that

Hle = [ glo = y(dc — da) o (dC ~ dy)
C}%\A
Since E'°¢ = V®'°¢ satisfies ([£.2.3) we may formally write

1
/ ¢ (1) div (|57 E*) 1),
Cd,s Rd+k

HBC) ~ —

Of course div (|y|YV®!°%)(¢) is in fact supported on Cr. For any S > R an integration by parts
yields

in 1
HRt [C] ~ p

S

1
/é ‘y"y’EIOCIQ_'_C‘/A |y"y(I>locE10C-ﬁ.
S

,S 605
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Since E'°¢ is not in L? the previous computation does not make sense, however it can be made
rigorous in a renormalized fashion by truncating the interaction close to the charges at scale
n > 0 and substracting a diverging term as 7 — 0 (here g(n)) for each charge. We refer to [PS15]
for more details.

We now turn to the boundary term in . A mean value argument applied to g and Vg
shows that for S > 2R we have

“PIOC(X) - DRQ(X>‘ < C(Nr+ RHYRS™1,

|E'°(X) — DrVg(X)| < C(Ng + RHRS 72,

uniformly for X € 8Cg. Indeed it is easy to see that the first derivative of ¢ g(X —t) is
bounded by CS™*~! and that its second derivative is bounded by C'S™*2 for any ¢ in Cg,
uniformly for X € 8Cg, and with a constant C' depending only on d, s (because S > 2R).
Moreover we have |Vg(S)| < CS™57L, the perimeter of dCg is O(S™*~1) and |y|* < C'SY on
dCs. Since vy = s — d + 2 — k we have §7Tdth—1 — gst+1

Combining the estimates above we get for any S > 2R

2
’/ |y|”<1>1°CE10C-ﬁ]§CSS+1 <D§g(5)‘+(N]%+R2d)< R __RlgS) R ))
9Cs

Ss—i—l S2s+2 Ss+2 523—0—3

with a constant C' depending only on d, s.
In the cases (4.1.3]) the right-hand side is O(S™*) as S — oo and s > 0. We thus obtain

‘/ ’y‘V@lOCElOC . ﬁ‘ — 05—)00(1) (446)
aCs
In the logarithmic cases we have s = 0 and g(S) = log S, hence if we set S = R* we get

| / [y @B i < CPED log R+ O (NRR™) + (1), (4.4.7)
0C

for a certain universal constant C°8,

Combining (4.4.5) and (4.4.6) and letting S — oo we obtain, in the cases (4.1.3])

: 1 oc in
lim (/ 7| Epef? —NRg(n)> =Hy'[C].
Rd+k

n—0 Cd,s

Combining (4.4.5) and (4.4.7) we obtain, in the logarithmic cases

1 .
lim ( / | EYCl® — NRg(n)> < HIBYC) 4 C°8 D% log R + O (N}%R’5) + og(1),
n—=0\ Cq s Cr

where we have used the trival bound [ [ EP < [, [yl |EweP.
R

From [PS15, Lemma 2.3] we know that the limit as n — 0 is almost monotonous, more
precisely for any n € (0,1) and S > 2R we have

1
/@ [y 1By°1* — Nrg(n) < lim (/C | Epe P —NRg(n)> + Nroy(1). (4.4.8)

n—=0 \ Cq,s

We thus obtain (4.4.1) and (4.4.2)). Inequalities (4.4.3) and (4.4.4) follow easily by taking
the expectation under P. O
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4.4.2 Bound below on the interaction

The self-interaction of an electric system of point charges with a negative background in a
given set K is bounded below in terms of the number of points in K (and the volume of K in
the logarithmic cases).

Lemma 4.4.2. Let K be a compact subset such that K C Cgr and let C be a point configuration
in K. We denote by N'(C,K) the number of points in K, and we denote by Int[K, K](C) the

interaction energy of K with itself as in (4.3.2)).
In the cases (4.1.3|) we have

Int[K, K](C) > —C (N(C,K)). (4.4.9)
In the logarithmic cases we have
mt[K, K(C) > ~C (N(C, K) + (N(C, K) — | K|)*log R+ N*(C, K)R™?).
In both inequalities C is a positive constant depending on d, s.

Proof. Letting E'°° be the local electric field generated by C in K and arguing as in the proof
of Lemma [£.4.3] we obtain

n—0 Cd,s

1 1
Int[K,KJ<C>=hm< / |W\E}7°CP—NRg<n>> b [ paleptn
Cs Cd,s JOBg

As seen in (4.4.8)) the limit as n — 0 is almost monotonous. In the cases (4.1.3), chosing
n= % and letting S — oo we obtain

Int[K, K] >

[ WPIEEE = e K)6(1/2) + O, (4.4.10)
Cd,s Rd+k 2

which yields (4.4.9).

In the logarithmic cases, choosing n = % and taking S = R* we obtain

1
el K] = —— [ WPEE - NCK)a()+C) - | [ leeet].
,S C’R4 2 2 8éR4 2
Controlling the boundary term as in the proof of Lemma yields (4.4.10). O

4.4.3 Discrepancy estimates

The following lemma is an adaptation of the discrepancy estimates of [PS15] to show how
the finiteness of Win*(P) (instead of We*¢(P)) implies that P has a number variance of order
o(R*).

Lemma 4.4.3. Let P be a stationary random point process of intensity 1.
In the cases (4.1.3)) if W"(P) is finite then we have

Ep[D%] = o R?%). (4.4.11)

In the logarithmic cases if D'°8(P) is finite then we also have [{.4.11]).
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Proof. In the logarithmic cases, the result is straightforward since D'°8(P) < +oc implies that
Ep[D%] = o(RY).
We now turn to the cases (4.1.3). Applying [PS15, Lemma 2.2] with n = % we get

1 D
~ Dhmin <1, R{j) < c/ﬂw B + O

Taking the expectation under P yields
Ep {ID% min (1, DRH < CEp V |y|7|E11°C|2] +CR?
Rs Rd - Rd+k 2 ’

where E'°° denotes the local field generated by C in Cr and C' is a constant depending on d, s.
We know from Lemma [4.4.1] that

1 .
/R [WI"| B = Nrg(5) < HE'[C] + CNE,
and combining the previous two estimates we obtain that

D in
1, R%j) < CEp[H + CR? = O(R%).

1 .
Ep [RS,D% min(

Using Jensen’s inequality and the fact that s < d we get
Ep[D}] = O(RS™5) = o(R™),
which proves (4.4.11]). O

4.4.4 The screening lemma

For convenience we recall the “screening lemma” following [SS15b], [SS15a], [RS15], [PS15]
and [LS15]. We present it here in a simplified form which will be enough for our purposes, we
refer to [LS15] for the most general statement available and to [PS15] for a proof.

The result consists in the following: given a point configuration C in Cr and a compatible
electric field F, we wish to construct another compatible field E*" such that E* -7 = 0 on
the boundary of Cr x R*. Indeed such screened fields may be pasted together in adjacent
hypercubes because their normal component vanish (and in particular are equal), which will
allow us to construct global fields defined in the whole space.

Of course this construction is not possible in general (e.g. it is easy to see that it imposes
a condition on the number of points in Cr, which must match exactly the volume of Cp).
However, under some conditions on E to be “screenable”, by extending C'r a bit and modifiying
C only in a thin layer of width e R we may find a new point configuration C5¢ and a compatible
screened field 5", such that moreover the energy of E" is bounded in terms of the energy of
E.

Lemma 4.4.4. There exists Ry > 0 depending on d,s and ng > 0 depending only on d such
that the following holds.

Let 0 < e < % and 0 < n < ng be fixed. Let Cr be a hypercube of sidelength R for some
R > 0, and let K be the hypercube of sidelength [R] (where [R]| denotes the smallest integer
larger than R).

Assume that E is a vector field defined in Cr x R* such that

—div (|y|"E) = cq,s (C — dpa) in Ckg.
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Let M > 1 such that E satisfies:

1
— MNE, > < M.
i B <

In the case k =1 (the non-Coulomb cases) we define ec r as

€cR ‘= 53 ly|"|E|”. (4.4.12)
: 4R J o (R\ (=2 R 22 R))

Under the assumption that the following inequalities are satisfied

M
o (B, Bl
£ 19
ot if k=0
R>q° (o) T2 2 1)y
max(RoM /A=Y g™ 1= s Roet=7e ' ) ifk=1,

there exists a point configuration C*" in K and a vector field E5° € LfOC(Rd+k,Rd+k) such that
1. The configuration C°" has exactly |K| points in K.

2. The configurations C and C* coincide on Int. := {x € Cg,dist(z,0CRr) > 2eR}.
3. We have

—div ([y E5") = cqs (B — 6ga)  in K x RE

E5r .7 =0 on OK x R¥,

4. Letting E)F" be associated to E*" as in (4.2.6) it holds

[owrEsE< ([ wPiER) 0o
K xRk Cr xRk

+ Cg(n)MeR? 4 Ce. reR? 4+ o(RT™Y).  (4.4.13)

for some constant C depending only on s, d.

4.4.5 Minimality of the local energy

The following was proven in |LS15, Lemma 3.13.]. It expresses the fact that the local elec-

tric field E'°° has a lower energy than any “screened” field compatible with the same point
configuration.

Lemma 4.4.5. Let R > 1 be an integer and C be a point configuration in Cr. Let E'°° be the

local electric field generated by C in Cr as in (#2.2). Let E € LT, (R4T* RITF) be a vector field
satisfying

—div ([y|"F) = Cd,s (C —dga) in Cgr X RF
E-7=0 on OCRr x RF.

Then, for any 0 <n < 1 we have

LorEsr< [ e
Rd+k CRXRk
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4.5 Connection of the electric and intrinsic approach

This section is devoted to the proof of Theorem It goes in two steps.

1. First we establish an upper bound Wele¢ < Wint (or Wint 4 DIo8 in the logarithmic cases).
The proof of this “electric-intrinsic” inequality is the purpose of Section [4.5.1]

2. Then, in the non-Coulomb cases, for any P € P, 1(X) we construct a sequence {Py}n
of stationary random point processes which converges to P and such that Wele¢(P) is
bounded below by limy_,oo W™ (Py) (we also ensure that Py is hyperuniform, in par-
ticular D'°8( Py) is always zero). Moreover we have limy_, o, ent[Py|TI] = ent[P|TI].

This operation is similar to the construction of a “recovery sequence” in I'-convergence,
and is proven in Section [4.5.2]

These two steps immediatly imply Theorem
Re-writing of the additional term. Using the definition of the two-point correlation
function (which exists by assumption as a Radon measure) we get

//02 (p2(z,y) — dwdy = Ep [Ne(Ng —1)] — R* = Ep [N}%} — R* —Ep [NR].
Since P has intensity 1 we have Ep [Ng] = R? hence
%2 (p2(x,y) — 1)dady = Bp |D}| — R (4.5.1)

Equation (4.5.1) allows us to write the term D'°¢ (defined in ([4.1.8])) in terms of py equivalently
as

1
D8(P) = C"8 limsup | — // (p2(z,y) — 1)dzdy + 1 | log R
Rd 0122

R—oo
1
_ (og 1: - 2
=C hglsup SEp {DRlogR} .

4.5.1 The electric-intrinsic inequality

Until the end of Section P denotes a stationary random point process of intensity 1
on R such that W™ is finite. In the logarithmic cases we assume that D'8(P) is finite.
The following proposition is the first part of the proof of Theorem

Proposition 4.5.1. Under the above assumptions, we have in the cases (4.1.3))
WeleC(P) < Wint(P),

and in the logarithmic cases We'¢(P) < Wint(P) + Dlog(P).

a. Screenability of the local electric fields.

Let n,e > 0 be fixed. Let {R,}, be an increasing sequence of real numbers such that

lim,, oo Ry, = +00 and .
lim R—ZEP[H}%E] = W™(P).

n—o0

We start by an auxiliary lemma.
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Lemma 4.5.2. Let E°" denotes the local electric field generated by a point configuration in
CR,, - The following inequality holds

1
P <Rd /C iEen < M) —1-0oMY), (45.2)
n RnX
moreover, in the case k =1,

1 v\ loc,n |2 12% 71 d—s | _ 1 _
P Wl B < (10Ree™ ) RYS) = 1—o0,(1).  (4.5.3)
R J o x(R\(=e? Rp.2Ry))

Proof. The first point (4.5.2) follows directly from Markov’s inequality and the assumptions on
P. Indeed we have, in the cases (4.1.3)) (using (4.4.3]))

1
Ep [ / [ Eoen 2
Cd,S CRnXRk

and in the logarithmic cases (using (4.4.4]))

< EP[Hi]%Z] +O(RY),

1

Cd,s

Ep [ / Iylle}fc’”IQ] < Ep[H}] + C*Ep[Dy, |log R, + O(R;),
CRnX k
where the terms O(R%) depend on 7.
To prove the second point (4.5.3)) let us fix X = (z,y) with 2 € Cr, and y > €2R,,. We
may estimate E'°°n(X) as follows: let Ry > 0 and let us divide R, into O(R%/R%) hypercubes
{Ci}ier of sidelength € (1R, %Ro). For any i € I we have by a mean value argument

‘/ Vg(X —t)(dC(t) — dt)| < C|Dilly|~*~" + CRo(N; + R§)|y| 7,
Ci

where D; (resp. N;) denotes the discrepancy (resp. the number of points) in C;. Summing over
1 € I we get
[P (X)| < O |Dillyl " + CRo(Ng, + Ry~
iel
We may thus write, using the stationarity of P

oc,n R%d —25— 25—
Ep[|E°™(X)|?] SCfdeEP[D%OHy! #72 4 CRo(E[NR,] + Ry >
0

Using Lemma 4.4.11{ or the fact that D'°8(P) is finite we have E[NG | = R + O(R2?). Finally,
integrating over Cr x R\(—¢%R,,e?R,)) we obtain

21

1
Ep / ly[Y| Bl
[54}32 Cry % (R\(—£2Rn 2 Ry,))

< (cEpp2 Ry 1 CRoR— 1+
= Pl Ro]Ri(Q)d(éQRn)d—i-s_{_ RoR} (e2R,,)d+s+2 |

Using the fact that — EP[D?DLO] = 0(1) as Ry — oo (see Lemma |4.4.3), we obtain

2d
RO

1
Ep / |y|7|E1°°’"\2] = o(RI™).
[54RZ Cryy X (B\(—£2Rn,e2R0))

The bound (4.5.3) follows by Markov’s inequality. O
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b. Proof of Proposition m

We now turn to the proof of Proposition [£.5.1]

Proof. Screening the local electric fields. When 7, > 0 and M > 0 are fixed we denote
by S}‘{i’i] the set of point conﬁgurations in Cg,, such that E'°%" satisfies (4.5.2)) and, in the case

k=1, (4.5.3). For any C in sM Ry, the conclusions of Lemma [4.4.4| apply to E'°¢"™. We may thus
find a point configuration C5% in K, := C[g,) and a compatible field E*" such that

1. The point configurations C and C*" coincide on a large subset of Cg,, namely {z €
CRn,diSt(l’,aCRn > 2€Rn}.

2. The vector field E5 is screened i.e. E5 -7 = 0 on 0K, x RF.
3. The energy of E5 is bounded in terms of that of E°®" as in ({.4.13)

/ |y|7|E;Cf|2§/ [ E ) (14 Ce)
Ky xRk CRnXRk

+ Cg(n)MeRi + Ce&RERZ -+ O(Rﬁlfl), (4.5.4)

where e, g is defined in (4.4.12]).

Constructing a global electric field. Any such point configuration (resp. vector field)
may be extended periodically in the whole space R?. The main point is that since E5 is
screened we can paste together several copies of E5" periodically without creating divergence
at the boundary of two tiles. Let CP®" (resp. EP") be the resulting periodic point configuration
(resp. vector field)

We let P, be the conditional expectation of P knowing S 77 and we let PP®" be the push-
forward of P, by the map C — CP® defined above. Flnally we let P2 be the average of PP
over translations in K. Taking the expectation of (4.5.4)) under P we see that (with W%lec

defined in (4.3.1)

v 1
V() < B, Ld /. RkaE;“F]—g(n)
,8 n X

1 1
< 7EPn / y’y ElOC,n 2
Ri Ld’s CRank| £

(1+Ce) —g(n) +Cg(n)Me

+ CeEp, [ec.r,] + o(R;1).

From Lemma we see that as M — 0o, n — oo the random point process P, converges
to P. In particular we may bound the expectations under P, in the right-hand side by the
expectation under P at a small cost

Ep, [/ |y|7!E}7°C’"I2] <Ep [/ |y|7!E}7°C’”|2] (1+o0(1)),
Cr,, xRF Cr,, xRF

Epn [eE’Rn] < EP[657R](1 + 0(1))

where both terms are o(1) as M — co,n — oo (keeping ¢, 7 fixed). By definition of e. r and a
mean value argument we see that up to changing € into 2¢ we may assume that

1
~ SR,

1

1 M.
iRy /cRn X (R\(—&? R e Rn))

B | <

Eplec r,| = Ep [
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We thus get

1

WP < B | o [ e
Cd,s CRnXRk

(1+0(1))(1 + Ce) — g(n)

€
Ry,
+ Cg(n)Me 4+ Ce™°R; L.

The convergence of P, to P implies the convergence of P2V to P as M,n — oo and ¢ — 0.
This might be seen as follows: the topology on P(X) is such that for any fixed § > 0, if two
random point processes coincide (or are close to each other) in Cg, for Ry large enough, then
they are d-close. In particular P, and P are very close to each other in C'g, because on the one
hand the vast majority of point configurations under P are screenable and on the other hand
the screening procedure does not modify the points in a large interior part of Cr,. Heuristically
speaking, if R, is larger than some Ry then P, and P should be §-close. Now when averaging
the random point process P, over translations in Cg, there is a nonzero proportion of z € C,,
which are such that the translation by z of the thin layer of C'g, in which the points have been
modified ends up intersecting Cg,, thus P}V look less like P in Cy. However when R, > Ry
this proportion is of order €, hence P3V still converges to P when taking M, n large and ¢ small.

Conclusion. Taking M large, letting n — oo and using (4.4.3)) or (4.4.4) we obtain, by
lower semi-continuity of W‘;lec over P 1(X), (see Lemma |4ﬁ[) that

Wele(P) < W (P)(1+ Ce) + O(e) + op(1),

plus an additional D'°8(P) term in the logarithmic cases. Sending ¢ — 0 and 1 — 0 we finally
obtain that Wee¢(P) < Wi"(P) or, in the logarithmic cases Wele¢(P) < Wint(p) 4 Dlog(p),
which concludes the proof of Proposition [£.5.1] O

4.5.2 Construction of a recovery sequence

In this section P denotes a stationary random point process of intensity 1 such that We(P)
1s finite. Moreover we assume that we are in one of the non-Coulomb cases, i.e. d=1 ord > 2
and s > d — 2.

The following result forms the second step in the proof of Theorem

Proposition 4.5.3. There exists a sequence { Px}n of hyperuniform random point processes in
Ps1(X) such that
lim Py =P, lim ent[Py|II] = ent[P|II],
N—o00

N—o0

and satisfying
lim Wt(Py) = Welee(p), (4.5.5)

N—oo

Let us observe that since the random point processes are hyperuniform, in the logarithmic cases
they satisfy D'°8(Py) = 0 for any N.

The proof of Proposition goes in two steps.

1. First we construct an auxiliary sequence of random point processes which converges to P
and such that almost every point configuration is finite and “screened” i.e. there exists
an associated screened electric field. This is done in Lemma [£.5.4]

2. Next, we extend this random point process in the whole space and make it stationary,
before bounding its interaction energy in terms of Wele¢(P).
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a. An auxiliary sequence

Lemma 4.5.4. There exists a sequence {P](Vl)}N of random point processes in P(X(Cn)) such
that

0. The sequence {P }N converges to P as N — oco. More precisely, there exists a sequence
{Ly}N such that Ly = N(1 — o(1)) and the respective restrictions of P°d and P to Oy, are
arbitrarily close as N — oo.

1. For P](\,l)—a.e. point configuration CV) there exists a screened electric field E) satisfying

—div (Jy"EW) = ¢44(CY = dga) in On x RE, (4.5.6)

EW .7 =0 on dCy x R”, (4.5.7)
In particular the point configurations have P](Vl)—a.s. N¢ points in Cy. We also have

min dist(p, 0Cn) > 1o, (4.5.8)
peCc@)

for some ng > 0 depending only on d, s.
2. The following estimate holds

11
li lim E I g E < Welee( p). 4.5.9
ovsup Ty B pg lcd,sNd /CNX JPVERF o) | < WD) )

3. The relative entropies of PJ(\,I) and Pc, with respect to Iljc, are close

Ent[P{’ [0, ] = Ent[Pey [Ty ] + o(N9). (4.5.10)

Proof. This follows from the analysis of [LS15], and we sketch here the main steps.

Let P be a stationary electric process associated to P as in Lemma For fixed
R, M,e,n > 0 we say that an electric field F is in S%;f (or is screenable) if its energy is
controlled as follows

1

Y7 1Ey* < 1.
' elRd CrxR\(—2R,e2R) !

1 2
Rd/CR y ly|"|Ep|® < M and, if k =1,

Under the assumption that We°¢(P) is finite, then the probability PeleC(Si\f;f) tends to 1 as
M, R — oo for any €, > 0 fixed. This is proven in |LS15, Lemma 5.10] and is similar in spirit
to Lemma, [4.5.2

If R is an integer much larger than M and F is in S 77 the screening procedure as in
Lemma [4.4.4] (see also [PS15, Proposition 6.1] and [LS15, Proposition 5.2]) applies. In particular
we may change the underlying point configuration in a thin layer of size < R close to the
boundary of Cr and obtain a new screened point configuration C*" in X' (Cpr) as well as a
compatible screened electric field E5* which satisfies . It also ensures that holds.
The screening procedure is described in [LS15, Section 5.1]. The energy of E5" is bounded in
terms of the energy of F as in .

The next step is to regularize the point configurations C*" by separating the pair of points
which are close from each other. This regularization procedure is described in |[LS15, Section
5.2], and another electric field E™°? can be associated to the regularized point configurations,
with a good energy bound. The main benefit of this procedure is to control the difference
between % fCRXRk |y|7|E}7T“’d]2 —g(n) and its limit as 7 — 0. In general the limit may be much
larger because of the contribution of pairs of points which are very close, at distance < 7, and
which are not “seen” when truncating at scale n > 0.



4.5. CONNECTION OF THE ELECTRIC AND INTRINSIC APPROACH 181

We let £,7 tend to 0 and M tend to infinity (depending on N) and we pick R = N large
enough. We let P](\,1 ) be the associated random point process in C'y. Most of the point configura-
tions (or electric fields) are “screenable”; the screening procedure only modifies the configuration
in a thin boundary layer of Cp, and the regularization moves only a small fraction of the points
by a small distance. This ensures that ]P’E\P converges to P as N — oo.

The estimates on the energy of the screened-then-regularized electric fields are such that
holds (see [LS15, Section 6.3.4.]) with E() := gmed,

Concerning the entropy, letting the new/modified points of the configurations move in small
balls allow us to recover a small, nonzero volume in phase space without affecting the energy,
since only a small fraction of the points have been deleted/created/modified, it gives

(see [LS15, Section 6.3.5] for a precise analysis of the volume loss). O

b. Proof of Proposition m

Proof. Step 1. Construction of the random point process. Let {P](Vl)}N be as in Lemma m

and let us extend P](Vl) in the whole space R? as follows. Let {C;};cr be a tiling of R? by a family
of hypercubes of sidelength N and let z; be the center of z; (we may impose that one of the x;’s
is 0). Let {P](\,1 2}16 1 be the laws of independent point processes distributed as P](\,1 ),

To any family {C (@) }ier of point configurations in Cy we may associate the point configuration

C:=Y 0, -cV

iel

which amounts to “paste” the point configuration C) in the hypercube C;.

For any i € I, let E®) be an electric field which is compatible with C(?) as in and
screened as in . By the latter condition, the normal component of each E() vanishes on
the boundary of Cy x R¥, thus we may paste together such fields along the boundaries and their
energy is additive. In particular the electric field £ defined by

E(z) := Z B9 (z — ;)
el

is compatible with C and moreover we have

B2 /E(i)Q
/Amr > [ 18]

el

for any measurable subset A C R%* and any 7 > 0. Let us also observe that, by construction,
the normal component of E vanishes on the boundary of C,,x x R¥ for any m > 1 (in fact it is

easy to see that it vanishes on any path included in NZ9 x RF).
)

We let P](\,2 ) be the random point process obtained by pasting P](Vl, ; in C; for i € I, or in other

terms the push-forward of the product measure of the {P](\,1 3,}16 1 by the map
{CNicr €= 0,, - €,

i€l
For any z € Cy, we let P](VQ)Z =40, P](VZ) be the push-forward of P](Vz) by the translation by a
vector z. We also define P](\? ) as the uniform average of Pz(v2, )Z for z € Cy. It is not hard to check

that P](\? Vis a hyperuniform stationary random point process which converges to P as N — oo.
Step 2. Estimates on the energy. We fix z € Cy and m > 1, and we use the subscript z to
denote a translation by z, e.g. C),n . denotes the hypercube (), N translated by z.
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By construction, to PJ(V% l—almost every point configuration in C(m +1)N,» We Imay associate an
electric field £ whose normal component vanishes on the boundary of C(;,41)n,. X R*,
Let us recall that Int[A, B](C) denotes the interaction energy between the sets A and B (cf.

(4.3.2)). By minimality of the local energy (cf. Lemma [4.4.5)) we have for P](\,2 ) _almost every C

P

1
Int[Climr N 2> Crmrnin 2 (C) < li E,|? — N4 .
B8]Cloms 2 Clm 6 )_ngg)(%’s [— g<n>>

Using (4.5.9) we see that the right-hand side is bounded in terms of W (P) as N — oo, more
precisely we obtain

li li ———FE ¢ [Int[C C < Welee(p 4.5.11
sup i sup ooty [Cmeve Cimial | STP) (4541
and both limits (as m — oo and N — o0) are uniform for z € Cy.

This gives an asymptotic upper bound on the expectation of Int[C(,,11)n, 2 Cm1)n,2] un-
der P](V% )Z, however the relevant quantity to control in order to get (4.5.5)) is rather the expec-
tation of Int[Cy,n,Cmn]. We thus need to bound the difference Int[Cpy1)n 2 Cmt1)n,2) —
Int[CmN,Cm ]

Let us write Int[Cpy1)n,25 Cm1)n,2] s

Int[c(erl)N,za C(m+1)N,z] = Int[CmN’ C'mN] + 2Int [CmNa C(m+1)N,z\CmN]
+ Int[C(m+1)N7z\CmN7 C(m-}-l)N,z\CmN]- (4.5.12)

We may bound the last term in the right-hand side of using Lemma with (for
the notations of the lemma) K = C(;,41)n,-\Crun and R = (m+1)N. In C(y1)n,.\Crmn there
are O(m“~1) points, and the discrepancy between the number of points and the volume is also
such that (M(C, K) —|K|)? = O(m?~'). Applying in the cases (4.1.3)) and (4.4.10)) in the
logarithmic case we obtain

Int[C i 1)N, 2 \CmN's Comy1)N 2 \Cmn| = o(m?) as m — oo. (4.5.13)

We are left to estimate the interaction term Int[Cp,n, Cri1)n,: \Cmn]. We may split it as

Int[CmNa C(m+1)N,z\CmN] = Int[c(mfl)N,m C(erl)N,z\CmN]
+ It [CrnN\Cim—1)N,2s Cm+1)N,z\Cmn ], (4.5.14)

and we will prove
E e [I0t[Coun, Clmiyn,:\Conn]| = o(m?). (4.5.15)

Proof of (4.5.15)) First we claim that
E_ o [Int[c(mfl)N,zaC(m+l)N,z\CmNﬂ = o(m%). (4.5.16)
N,z

To prove (4.5.16]) let us write

1 .
Int {C(mfl)N,m C(erl)N,z\CmN} = - Pdiv (|y"yEb)7

Cd”s C(m—l)N,z
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where ®“ is the local electric potential generated by the system of charges in C, 1) N2 \CmnN
ie.

O (z) = /C<m+1)N e g(x —t)(dC(t) — dt)

and EY is the screened electric field associated to the system of charges in Cim-1)N,z- Using
(4.5.8)) we may also write

1 .
Int [C(m—l)N,za C(m+1)N,z\CmN} = - / (I)?;Odlv (|y|7Ef’70),
Cd,s JCi_1)n,-

because the minimal distance between a point charge in C,,_1)n,, and one in C(,,11)n,:\Cimn
is > np. An integration by parts and Cauchy-Schwarz’s inequality yield (observing also that

Cim-1)N,2 C Clmt2)N)

Int C1(m—1)N,zv C(m—l—l)N,z\CmN]

1/2 1/2
- ries) ([, wriee)” . wsa
Clmy2)n XRF Rd+k

for some constant C' depending on d, s. Using the definition of PJ(\72, )Z we have

[.1E |2] dEPm[/ \E”\]
Rd+k N CNXRk

where EW) is as in ([£.5.6). Using (@ we obtain that

. 1 b |2 elec
lim sup EPJ<V2,)z {(mN)d /Rd+k | £ | } < (Wee(P) + C)

N —00,m—00

| DINGS!
PN,z

with C' depending only on d, s. In particular this yields

B | [ D] = 00

Using Jensen’s inequality we may thus bound the second term in the right-hand side of (4.5.17))

as 2
E [( L PR ] — O(m"2), (45.18)

It remains to control the the first term in the right-hand side of (4.5.17)). We claim that

Epe) l/ Y| Ey, 2] = o(m%). (4.5.19)
Nz [ o) v xRY

Since E“ is the local field generated by the configuration in Ci,,,;1)n,.\Crn we may, by almost
monotonicty as in Lemma [4.4.1| compare fC( U [y Ep, |2 with the interaction energy

Int[C(m+1)N,z\CmN7 C(m—i—l)N,z\CmN]?

up to a boundary term in the logarithmic case (which is bounded as usual) and a term of order
O(m1)g(no) = o(m?). We now prove that

| DENES {Int[c(erl)N,z\CmN?C(m+1)N,z\CmN” = o(m?). (4.5.20)
N,z
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Let us recall that {C;};cs denotes a tiling of R? by a family of hypercubes of sidelength N.
We let Jy . be the set of indices

JN,z = {.7 € Ia (C’j,z N C(m—i—l)N,z\CmN) 7& (Z)}

and it is clear that the cardinal of Jy . is O(m9~!). We may then write the interaction of
Cims1)N,z\Cmn with itself as

Int |:C(m+l)N,Z\CmN7 C(m+1)N,Z\CmN]:|

/| , gl — )(dC(x) ~ dz)(dC(y)  dy),
jl#erJN,z (le ,sz’(m.-‘,-l)N,z\C"mN)>< (CjQ,ZmC(m+1)N,z\C77LN)

+ Z Int[éj,z N C(m+1)N,z\CmN)7 Cjj,z N C(m+1)N,z\CmN]-
jEJN,z

The previous identity is nothing but writing the interaction of a collection of (possibly truncated)
hypercubes with itself as the sum of hypercubes-hypercubes interactions plus the sum of self-
interactions.

Since there are O(m?9~!) elements in Jy _, we have

E > Int[C. N Cingyn,-\Cimnv), Cjz N Clmpyn,\Crn] | = O(m?™1).

jeJN,z

(2)
PN,Z

It remains to bound the sum of interactions between two disjoint hypercubes. We have, if the
two hypercubes are not adjacent (since there are only O(m?~!) pairs of adjacent hypercubes in
the sum, all giving a contribution of order O(1), we may neglect these terms),

g(x — y)(dC(x) — dx)(dC(y) — dy)

> —Cg(dist(Cj,, Cj,)),

/(Vle ,sz(m+1)N,z\C7nN) ><(C‘jQ,Zmc‘(m-&-l)N,z\cymN)

with a constant C' depending on N and d,s. For any fixed j € Jy, we have (the sum is
implicitely restricted to non-adjacent hypercubes)

mN
> 9(dist(Cy, Cy)) < C/ r 2 dr < C(maT T 4 1),
JAIEIN, - 1

with a constant C' depending on N and on d,s. The element of volume is only 7%~2 because
we are summing terms on the boundary of C,,ny. We may then estimate the sum of pairwise
hypercube interactions as

Y. 9(dist(Cy,, Cjy)) < O(m™H)(O(m?17%) + 0(1)) = o(m?),

J1#£j2€JN,2

because we are restricted to the non-Coulomb cases for which s > d —2. It proves hence
also (4.5.19). Combining and we obtain ([4.5.16).

It remains to control the last term in the right-hand side of , which is another
boundary-boundary interaction and is bounded as in .

Conclusion for the energy. Finally, combining (4.5.13) and (4.5.15]) we obtain that

E_ ¢ [Int[c(erl)N,zv Clmi1)n,z] — Int[Cr, CmN” > o(m?),
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with a o(m?) depending on N and d, s, but uniform in z € Cy. Combining this estimate with

(4.5.11)) we thus conclude that

limsup limsup E ) [Int[Cy v, Cron]] < welee(p).

N—oco Mm—00 N

Step 3. Entropy and conclusion. The convergence of the entropy follows easily from (4.5.10))
and the definition of the relative specific entropy, indeed we have

1
ent[ P |11] = ~aEntlPy Mo, ] + o(1).

To summarize, we have shown that the sequence {P](V3 )} N satisfies the requirements of Propo-
sition which concludes the proof. O

4.6 High-temperature limit

In this section we apply the results of Section to study the limit as f — 0 (the high-
temperature limit) of the minimizers of Fg. We prove their convergence to the law of the Poisson
point process in all cases (4.1.1)), (4.1.2)), (4.1.3) as stated in Theorem

4.6.1 Specific Pinsker inequality

The well-known Pinsker inequality gives an upper-bound on the total variation distance
between probability measures in terms of their Kullback-Leibler divergence:

1
P— Qv <\ 2Eni(PQ)
where |P — @Q|7vy is the total variation defined by
|P — Q|rv :=sup{P(A) — Q(A), A measurable}.

Combining the Pinsker inequality with the property of the specific relative entropy
we get for any stationary random point process P the following specific (infinite-volume) Pinsker
inequality:

[Poy — Mgy |y

sup

1
- <4/ =ent[P|II].
N>1 |Cn|2 2

Since the total variation convergence implies weak convergence of probability measures, it
is clear that the convergence in specific relative entropy sense implies the weak convergence of
random point processes i.e. if a sequence of stationary random point processes { Py} satisfies

lim ent[P|II] =0
k—o0
then the sequence { Py} converges to II.

4.6.2 Finite energy approximation the Poisson point process

Since the two-point correlation function of the Poisson point process satisfies po1 = 1 we
clearly have W™ (IT) = 0 in all cases (4.1.1)), (4.1.2) and (4.1.3)). In the case it thus follows
that Wee¢(II) is finite, according to the electric-intrinsic inequality of Section m For the
one-dimensional Log-gas it has been proven in [LS15] that We¢¢(IT) = 400, and the answer is
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unknown in the two-dimensional Log-gas case (the result of Section is not enough because
D°8(T1) is infinite). However we may always construct random point processes which converge
in entropy sense to IT and whose renormalized energies are finite.

Lemma 4.6.1. There exists a sequence {my} of stationary random point processes in Ps1(X)
satisfying

1. Welee(m,) is finite for all k.

2. limp_o0 ent[wk\l'[] =0.

Proof. For any k > 1, let {C?};cr be a tiling of R? by a countable family of disjoint copies of
the hypercube Cy, and let {B}c}Z be the law of a family of independent Bernoulli point processes
with k¢ points in C,i. We let 7t be the random point process consisting of the union of all B};
for i € I. Finally we define 7, by averaging 7}, over a “fundamental domain” i.e. we let

TE 1= Uk + 7T,t€,

where wuy is a uniform random variable in C} (if C is a point configuration we let x 4+ C denote
the point configuration {x + p,p € C}, cf. also (4.1.10)).

The random point processes m; defined this way are clearly stationary and of intensity 1.
The two-point correlation function of 7r}; is easy to compute:

po(x (4.6.1)

¢ 1= ,%d if x and y belong to the same hypercube C’f,
(z,9) .
1 otherwise.

The two-point correlation function of 7 could be deduced from (4.6.1)) by averaging pb(x,vy)
over translations of both coordinates by a vector in Cy. Let us simply observe that pa(z,y) — 1
is bounded (because pb is) and has compact support (e.g. p2(z,y) = 1 as soon as |z —y| > V/dk)
which implies (using the expression (4.3.6])) that Wit*(7) is finite. Moreover, observing that

[t -1 =1
CR
we also get that
[ et = 1) = —1+ ORI
Ch
which implies in view of (£.5.1)) that E., [D%] = O(R%1), hence D'°8(ry,) is zero. Using the
electric-intrinsic inequality we conclude that We(r;) is finite for all k& > 1 which proves the
first point.
We are left to prove the second point of the lemma. Let & be the measurable subset of

point configurations which have exactly k¢ points in each hypercube C’};, and let & be the
subset obtained by averaging &I over Cj, more precisely we let

EL = U x+C
zeCy,CeEf
where the sum x + C is defined as above. By definition 7, coincides with the law of the Poisson
point process conditioned to the event &,. For any R > 0 we may thus estimate the relative
entropy

Ent [ (7)o T | = — log Ty (E5): (4.6.2)
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Since & C & we may bound below IT|¢, (€x) by IIjc,(£f) which is easier to compute, indeed
we only have to estimate the probability that

R1¢ RY
Vew=| 5] =

disjoint hypercubes of sidelength k receive exactly k¢ points, and we can bound below H|CR(5};)

by
. (ke 4\ NVRE
o, (&) = (6 : ((kd))' ) :

An elementary estimate using Stirling’s formula shows that

Rd

—log I, (&) < Cﬁ (4.6.3)

with a universal constant C. We deduce from (4.6.2) and (4.6.3]) that

1

RdEnt [(Wk)CR‘H\CR} =O0(k™%

hence by definition of ent[-|TT] we also have ent[m;|TI] = O(k~%), which proves the second point
of the lemma. O

4.6.3 Proof of Theorem
From Lemma [£.6.1] the proof of Theorem [13]is straightforward.

Proof. For any 3 > 0, let Pg be a minimizer of F3. In particular we have
BWEI(Pg) + ent[Pg|IT] < SW(7y,) + ent [y, |IT]

for any k& > 1, where {m}; is the sequence of random point processes constructed in Lemma
Since We¢ is bounded below by some constant depending only on d, s we have

sup  ent[P3|TI] < ent[my|TI] + 3 (weleC(wk) — min welec) .
Fp(Pg)=min Fg
Since ent[m;|II] = o5 (1) and We¢(m;,) is always finite, we get (4.1.9) by considering k large
enough and 3 small enough (depending on k). The fact that convergence in entropy sense
implies weak convergence was observed in Section O

Since Sineg was proven to be a minimizer of F3 for the one-dimensional Log-gas, we get
Corollary as an immediate consequence of Theorem This convergence result was
recently established in [AD14] by analysing the family of coupled diffusion processes defining
the point processes Sineg. Here we rely only on the fact that the Sineg process minimizes the
free energy functional Fjg.

4.7 Low temperature limit in one dimension

In this section we prove Theorem i.e. we use the link between We and W™ to give
a minimization result on the energy in the one-dimensional case. As can be expected the
minimizer of W is attained by a “crystalline state” which in dimension 1 corresponds simply



188 CHAPITRE 4. LIMITES DE HAUTE ET BASSE TEMPERATURE

to the lattice Z. In the remaining of this section we deal with the cases (4.1.1]) or (4.1.3)) with
d=1land 0 <s<1.

In [SS15a] (in the one-dimensional logarithmic case) the minimality of W(Z) among the
energies of periodic configurations was proven using an explicit formula valid in the periodic
setting, together with the convexity of the interaction kernel. An argument of approximation
by periodic configurations was then used to prove that Z is a global minimizer of the energy
(however, it is not unique). In [Lebl5c| we turned this convexity argument into a quantitative
estimate in order to bound below the difference We'¢(P) — Wele¢(P;) in terms of the two-point
correlation function of P, first in the periodic case, then in the general stationary case using
the same kind of approximation. It was enough to prove that Pz is the unique minimizer
of Wele¢ among stationary point processes in the case d = 1,5 = 0. It also yields the fact
that if Wele¢(P,) — Wele¢(P;) then the two-point correlation function of P, converges to that
of Py. In the following we prove the same result in all one-dimensional cases, first at the
level of hyperuniform random point processes (which include periodic point processes) then in
the general stationary case using the approximation argument of Proposition [£.5.3] We also
observe that convergence of the two-point correlation functions to that of Py in fact implies
weak convergence of the random point processes.

4.7.1 The k-th neighbor correlation functions

In the one-dimensional case the two-point correlation function of a stationary random point
process admits a decomposition as the sum of the k-th neighbor correlation functions.

Let P be in Py 1(X) such that the two-point correlation ps exists as a Radon measure in
R x R. For any k > 1 we define the k-th neighbor correlation function ps j by duality, letting
for any ¢ € C.(R x R)

1
/90/)2,1: = §EP Z oz, y) + ey, z)| . (4.7.1)
z,y€C,y k-th neighbor of =

In if z, y belong to a point configuration C we say that y is the k-th neighbor of z if x < y
and C([z,y]) = k + 1. We will abbreviate “k-th neighbor of” by k.n.o. in the formulas. Since P
is stationary we may see py ) as a measure on R by letting pa i (z) := p2x(0,2) (in the rest of
this section we will use the same notation for both interpretations of ps ).

Lemma 4.7.1. For any k > 1, for any compactly supported, measurable, even function ¢ : R —
R, we have

L

Ep ) oe-v)| = [ e@p@-a/D).  @12)
z,yeCN[—L/2,L/2],y k.n.o. x 0

Proof. We use the definition (4.7.1) together with a change of variable (x,y) — (x —y,x + y)

as in the re-writing of W™ in Section O

4.7.2 Minimization: the hyperuniform case

Lemma 4.7.2. The unique minimizer of W™ among random point processes in Phyp(X) is the
random point process Py defined in (4.1.10). Moreover for any such P we have

+o0o 0o _
Wint(P) — Wint(PZ) > Ckz_:l/()+ min <(:Iiks—£)27 1) p27k(m), (4.7.3)

with a constant ¢ depending only on s.
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Proof. Since there are a.s. r points in any interval of length r the k-th neighbor correlation
function of P is supported in [k — r, k + r]. We may thus write, for any R > 0

R+r
L / ~ (R~ Jal)d / (zpz,k—l><R—x>dax-
k=1

Let ¢ : x — %g(z)(R — x). By definition of W™ (see (.3.6)) we get

R+r
Wmt( ) = ]1m1nf/ Yr(x <Z P2k — 1) dx, (4.7.4)

and for Pz it is easy to see that the liminf is actually a lim and we have
_ R LR)
Wt (Pg) = Jim Yr(z Z Sp — 1| da. (4.7.5)
Substracting (4.7.5)) in (4.7.4) we get
_ Rtr LR
Wit (P) — Wt(Py) = hm 1nf/ Yr(z Z P2,k — Z Ok

We may re-write the previous expression as

[R—]

. . +Oo
W (P) — W (Pg) = lim inf ; Vr() ( > ook — 5k)) + ER,y (4.7.6)
k=1

where the error term Ep, is bounded using the fact that ps is supported on [k — 7,k + r] and
that |1 g| is decreasing on [R — 2r, R] (for R large enough).

R R+r LR]
S/O 1/JR($)< Z P2k + Z (5k) < Cr|yp(R —2r)| = og(1). (4.7.7)

k=|R—r| k=|R—r]

Let us now observe that ¢p is a convex function, more precisely for z € (0,+00) we have

B(z) > -z for some positive constant ¢ depending on s. Moreover for all £ > 1, since P is of
intensity 1 we have [ par = 1 (po is the probability law of the k-th neighbor) and since P is
periodic the expectation [ xpy (z) is finite and thus equal to k (the k-th neighbor is in average

at distance k). Combining this observation with the convexity estimate we may write
+o0 (:U _ k)Z +oo ) (x _ k)2
; Vr(@)(p2,k — 0k) = /0 Wﬂzk(x) 2 C/o min | e 1| p2i(z),

with ¢ depending only on s. Inserting this bound in (4.7.6)) and using (4.7.7) we get
int int e x — k)
WHP) — W (Py) > lﬂlo%f Z / ( s ,1) p2.i(x) +or(1)

“+oo

Hence finally by taking the limit R — oo we obtain that

i . “+o0o r—k 2
Wlnt(P) _ Wlnt / ( ks+2) ’1> /)Q,k(x)7

which proves . This lower bound implies that Pz is a minimizer of W** among hyper-
uniform random point processes and also that it is unique. Indeed Wint(P) = Wint(P;) implies
(by ) that py i, = 0y, for all £ > 1, hence the two-point correlation function of P coincides
with the one of Pz, which is enough to conclude that P = Pz, (see e.g. [Leb15c|). O
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4.7.3 Proof of Theorem

We may now give the proof of our minimization result for Wel*®. First let us observe that
Wwelee(Pg) = Wint(Pz). The inequality < is true by Proposition Moreover Proposition
ensures that there exists a sequence of hyperuniform random point processes such that
lim sup y_, oo W (Py) < Welee(Py). By Lemmaabove we know that Wit (Py) > Wint(Py),
hence in fact Wint(Pz) < Wele¢(P;) and equality holds.

Proof. Step 1. Minimization of W, Let P be a minimizer of W on Pg;(X). From
Proposition we get a sequence {P,}, of hyperuniform random point processes converging

to P and such that {W™(P,)},, converges to We¢(P). For any k: n > 1 let pg,z denote the
k-th neighbour correlation function of P,. In the hyperuniform case, 3)) implies that for any
M >0 and k > 1 we have

2M Tz — k)2 .
Wt(P,) — WP )2/0 min <(k+§)1> p;,z(:n), (4.7.8)

and the right-hand side is bounded below by (see (4.7.2))

M x — k)2 n T
/0 min <(ks+2)7 1) Pé,zﬂ (z) (1 - 2]\4) =Ep,

where we let g (x) := min ((“Z:iff, 1). Since { Py}, converges to P we have

> op(z — y)]

z,yeCN[—M,M],y k.n.o. ©

Ep

> or(z —y)

CN[—M,M],y k.n.o. ©

2M " 1 M
—/ or(z)p2.k(x) (1 — ) +on(1) > / wrp2.k(x) +on(1). (4.7.9)
0 2M 2 Jo
Combining (4.7.8) and - we see that

M v k)2
/0v min <(k,‘s+§)’ 1) P2,k( ) <2 (Wmt( ) Wmt(PZ)) + On(l),

> or(z —y)

CN[—M,M],y k.n.o. ©

but as n — oo we have Wint(P,) — Welee(P) < Welee(py) = Wint(Py). Tt implies that

M r— k)2
/0 min <(ks+l;:), 1) p2i(x) =0

for all M > 0 and k > 1. Finally we get that py; = ) for all £ > 1 and we conclude as in the
proof of Lemma that P = Pz, which ensures that Py is the unique minimizer of We'¢ on
Ps1(X).

If P is not a minimizer the same argument shows that

elec elec oo 33 — k)2
welee(p) — W L1 pela) (4.7.10)

as in the hyperuniform setting.
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Step 2. Energy of minimizers of Fg tends to Wele¢(Pz). On the other hand we claim that
if {Ps}p>0 is a family of minimizers of 73 then we must have

lim Wel*(Pg) = Weee(Py). (4.7.11)
B—0

To prove (4.7.11)) we cannot directly evaluate F over Pz and compare with Pg because ent[Py|II]
is infinite. However we may argue as in Section and show that there exists a sequence {my }
of stationary random point processes in Ps1(X) satisfying

1. ent[m|II] is finite for all .
2. limg_, oo W[, ] = Welee(Py).

Such a sequence can be constructed by chosing a “vibrating” approximation of Pz. For any

k> 1 we let {Vj m}mez be a countable family of i.i.d. random variables distributed uniformly

in [+, 1], then we let 7}, be the random point process

t._
7Tk = Z 5m+vk,m
meZL

and finally we define 7 by averaging w}. over [0,1]. It is easy to check that 7 is a stationary
random point process of intensity 1. In fact 7, may equivalently be defined as a renewal process
with increments distributed as 1+ Vo — Vj, 1. The specific relative entropy of 7, coincides with
its “entropy rate”, it is finite (see |[DVJO8, Section 14.8.]) and blows up as kK — oo like the
entropy of V2 — V4 1. Concerning the energy, we have the bound

Welec (PZ) < Welec (ﬂ_k) < Wint (ﬂ_k)

and the fact that Wint(m,) converges to Wint(Pz) = We(P;) can be checked directly with
the help of the formula defining W™, Indeed the two-point correlation function of 7, may be
written as

pame = D Ur(m+)

meZ

where vy, is a triangular “hat function” of width i and integral 1. For any m € Z and R > 0,
a mean value argument shows that

‘/¢k(m+-)log|x\(1—g)—log|m|(1_g)‘§;( 1 +1>‘

m?2  mR

Consequently, we get

lim sup
R—o0

/[R X (p2,m, — p2,2) (1 — R)’ =0 <k:2> :

)

and we obtain that limy_,o, Wt(rmy,) = Wint(Py).
With the help of the sequence {7}, we obtain (4.7.11)) by arguing as in Section indeed
since ent[Pg|II] is always non-negative we have

1 1
WE(Py) < W) + entlmilTT] < W (Ps) + Zentlme|TI] + ok(1)

and (4.7.11)) follows by chosing k, 3 large enough.
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Step 3. Convergence of the two-point function of minimizers of Fz. Combining (4.7.10)
and (4.7.11) we see that if pg’g ,2 denotes the k-th neighbor correlation function of Pg, we have for

any

400 400 _ .\2

CEZ/ min <(33]€s+l;:),1> p;@(x)—)o
k=170

as f — 0o. Arguing as in the proof of [Lebl5c, Lemma 2.3] we deduce that pgﬁ ) converges to

> kez+ Ok in the distributional sense as 8 — co. Let us observe that

p2z =Y Ok

keZ*

is the two-point correlation function of Py.

Step 4. Weak convergence of the minimizers of Fg. It is not hard to see that this convergence
implies in fact the weak convergence of Pg to Pz as f — oo. For any % >¢e > 0let x. be a
smooth non-negative function which is equal to 1 on the set Ugezlk — 1 4+ ¢,k — €] and to 0
on Z. For any T" > 0 we let 77, be a non-negative continuous function such that 7. = 1 on
[T +¢,T — €] and 0 outside [T, T]. We let ¢, 7 be the continuous, compactly supported map

<P€,T($a y) = Xs(ﬂj - y>TT,s($)TT,E(y)'

Let A7, be the event “there is no pair (z,y) of points of the configuration in [-7 +¢,T — €]

such that |z — y| € Ugezlk — 1+ ¢,k —€]”. Since [ ¢-rp27 = 0 and since pg’B) converges to p2 7

as f — oo we have
Ps(Are) — 1 (4.7.12)

as § — oo. In other words, with probability tending to 1 as 8 — oo, a configuration under
Ppg locally looks like a (translated) subset of Z in which all the points have been displaced at a
distance at most ¢.

The variance under Py of the number of points in [T, T is bounded as 3 — oo, because it is
controlled by the energy Wee¢(Pg), which itself converges (to We*¢(Py)). This follows from the
discrepancy estimates (see e.g. [Lebl5c, Lemma 2.1] or [LS15, Lemma 3.10]). In particular we
have uniform integrability under Ps of the number of points in [-7,T] as § — oco. In particular,
conditioning Pz to A7, we have an average of 2T + o(1) points in [-T,7] as § — oo, because
holds.

Finally we deduce that for any € > 0, with probability tending to 1 as 8 — oo, a configuration
under Pjg locally looks like a translate of Z in which all the points have been displaced at a
distance at most €. This implies the convergence of Pg to Pz as 3 — oo. O



Chapitre 5

Minimiseurs du log-gas uni-dimensionnel

Ce chapitre est constitué de l'article “A uniqueness result for minimizers of the 1D log-gas
renormalized energy” [Lebl5c|, paru dans le Journal of Functional Analysis. Les résultats sont
pour I’essentiel subsumés par ceux du chapitre précédent.
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5.1 Introduction and statement of the results
5.1.1 Introduction
The N-particle Log-gas Hamiltonian wy is defined on RY by:
N
wn(T1,...,TN) :—Zlog|mi—xj|—|—NZV(xi). (5.1.1)
=1

i#]

where V is a confining potential satisfying some growth conditions to be given later. The factor
N before the second term in corresponds to a mean-field scaling where both terms in the
Hamiltonian (the interaction term — 37, log|r; — z;| and the potential term NN V()
have the same order of magnitude N2.

While wy has an obvious physical interpretation as the energy of N charged particles
x1,...,xN living on the real line, interacting pairwise through a potential g(x,y) = — log |z — y|
(which is the Coulomb potential in two-dimensional physics) and subject to an external field

193
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V', the Hamiltonian also appears in random matrix theory as an exponential weight in
the law of the eigenvalues of random Hermitian matrices (for a survey see [Forl0]). Minimizers
of wy are also called (N-points) “weighted Fekete sets” and arise in interpolation, cf. [ST97].
The “renormalized energy” W of Sandier-Serfaty (introduced in [SS12], see also [SS15b] for
the two-dimensional case, [RS15| for an alternative approach that allows to handle the higher
dimensional case as well, and [Serl5| for a pedagogical survey) is a way to make sense of the
Hamiltonian wy in the N — oo limit, by deriving an energy functional which allows to consider
the energy of infinite point configurations, and which is the second-order I'-limit of wy.

It is proven in [SS15a] that W is minimal at Z among infinite point configurations of density
one, however this minimizer is not unique: in particular it was observed that local defects in
the lattice, by the mean of arbitrary perturbations of Z on a compact set, form non-lattice
configurations with the same minimal energy. In this paper we prove that the local defects
essentially account for all the ground state degeneracy, by showing that there is no translation-
invariant probability measure on point configurations having minimal energy in expectation,
but the one associated to Z by averaging Z over translations in [0,1]. This uniqueness result
is obtained as consequence of our main theorem, which gives a lower bound on the (mean)
renormalized energy of a stationary point process in terms of the difference between its two-
point correlation function and that of the stationary process associated to the one-dimensional
lattice Z.

5.1.2 Definition and properties of the renormalized energy

In this section, and in all the paper, we follow mainly the definitions and notation from
[SS15a]. We have chosen to work here with the definition of the “renormalized energy” as given
in [SS15a] or [SS15b]. An alternative definition has been given in [RS15] and extended for
more general interactions in [PS15|, for which our results would apply readily in the case of a
logarithmic interaction. For more general interactions (when the logarithmic kernel is replaced by
a two-body interaction of the type g(z,y) = ﬁ with 0 < s < 1) the lattice Z is again expected
to minimize the renormalized energy by a simple convexity argument (see [PS15, Proposition
1.5.]), and the type of quantitative bounds that we show can probably be extended to these
interactions as well.

Let us start by recalling the definition of the renormalized energy. The renormalized energy
(in the spirit of the “renormalized energy” of [BBH94]) of an infinite configuration of points
can be understood as a way of computing the electrostatic energy of those points, seen as
interacting charged particles of charge 41, together with an infinite negatively charged uniform
background. In 1D, the renormalized energy is obtained by “embedding” the real line into the
plane and computing the renormalized energy in the plane according to its two-dimensional
definition of [SS15b|. In particular, the pairwise interaction g(x,y) = —log|z — y| is not the
Coulomb electrostatic interaction of one-dimensional physics, but a restriction on R C R? of the
Coulomb two-dimensional interaction, hence the term “Log-gases”.

In what follows, R will denote the set of real numbers but also the real line of the plane R?
i.e. points of the form (x,0) € R% For the sake of clarity, we will denote points in R by the
letter x and points in the plane by z = (z,y). We denote by dr the measure of length on R seen

as embedded in R?, that is
/ POR = / o(x,0) dx
R2 R

for any smooth compactly supported test function ¢ in R2.
The “admissible classes” A,, correspond to the electric fields generated by infinite configu-
rations on the real line together with a background of uniform density m:
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Definition 5.1.1. Let m > 0. Let E be a gradient vector field in R%2. We say E belongs to the
admissible class A, if
div E = 27(v — még) in R? (5.1.2)

where v has the form v = Y7 cp 0, for some discrete set A C R C R? (where §, denotes the

((=R.R])
R

Dirac mass at z), and = is bounded by a constant independent of R > 1.

We now turn to the central definition:

Definition 5.1.2 (Renormalized energy). Let m be a nonnegative number. For any bounded
function x and any E satisfying (5.1.2) we let

W(E, x) = lim 1/
120 \ 2 JR2\U e B(p.m)

X|E[* + mlogn > x(p))

peEA

and the renormalized energy W is defined by

W(E
W(E) = limsup WAE, xr)

n = (5.1.3)
—00

where {XRr}r>0 is a family of cut-off functions satisfying
IVxrl <O, Supp(xr) C [-R/2,R/2] xR, xr(2) =1if|z| <R/2-1,
for some C' independent of R.

The various admissible classes A, (m € RT) are related to each other by the following
scaling relation: if E belongs to Ay, then E' := LE(-/m) belongs to A; and

W(E)=m (W(E') —mlogm). (5.1.4)

Moreover, it is easy to see that the point configurations associated to E and E’ coincide up to
an homothety.

For reasons related to the physical interpretation of the Hamiltonian wy, the gradient vector
field E is sometimes called the “electric field” associated to a configuration (seen as charged point
particles). Starting from a discrete set of points A C R C R?, there might be several gradient
vector fields E satisfying with v =37 .4 0,1 if E is any such field (let us note that, due to
the infinite setting, there might not be any) we can simply add to E the gradient of any harmonic
function on R2. In the two-dimensional case this is indeed an issue, but for one-dimensional
Log-gases the following lemma shows that there is in fact a natural choice of the electric vector
field F:

Lemma 5.1.3. [SS15a, Lemma 1.7.] Let E € Ay, be such that W(E) < +oo. Then any other
E' satisfying div E' = div E and W(E') < +00, is such that E' = E. In other words, W only
depends on the points.

By simple considerations similar to [SS15b| Section 1.2] this makes W a measurable function
of the point configuration A and with an abuse of notation we will write W(A) as well as W (E),
where F is the only admissible vector field of finite energy associated to A (when it exists). We
will frequently use the following map to get from an electric field E € A; to its underlying point
configuration:

1
F+— —div F + 5IR{-
2w

It is not difficult to show (for a proof see [SS15b|) that an admissible gradient vector field
is in L] (R?,R?) for ¢ < 2. We endow the admissible classes A,, with the Borel o-algebra

loc

inherited from L} (R? R?) for some ¢ < 2.
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Definition 5.1.4. Let m > 0. If P is a translation-invariant probability measure on A,,, we
define

W(P) = / W (E)dP(E).

We say that such a probability measure is translation-invariant (or stationary) when P is in-
variant by (the push-forward of) the maps E — E(- — \) for any A € R.

Finally, when X is a measurable space, P(X) will denote the space of probability measures
on X. If P € P(X) is a probability measure and f : X — R a measurable function, we denote
by Ep [f] the expectation of f under P.

5.1.3 Periodic case and minimization

When the configuration is assumed to have some periodicity, there is an explicit formula for
W in terms of the points. The following lemma is proven in [BS13| Section 2.5.] (here we can
reduce to the class A; by scaling, as seen above in (5.1.4))).

Lemma 5.1.5. In the case m = 1 and when the set of points A is periodic with respect to
some lattice NZ, then it can be viewed as a set of N points a1,...,an over the torus Ty :=
R/(NZ). In this case, by Lemma [5.1.5 there exists a unique E satisfying and for which
W(E) < 4o00. It is periodic and equal to Etsy = VH, where H is the solution on Ty x R to
—AH =2n(3; 04, — Or), and we have the explicit formula:

‘ 7T(ai — aj) 2w

2sin ———= —Wlogﬁ.

T
W(E{a;y) = N Zlog N

i#]

Henceforth we will denote by W (Z) the energy of the periodic electric field associated to Z
as above. In this periodic, one-dimensional setting, Z is shown to be the (unique) minimizer
of W by a simple convexity argument. The key point of our proof is to make this argument
quantitative in order to get a lower bound on W ([E(,,}) in terms of the local defects with respect
to the lattice configuration (this is Lemma [5.1.9).

A general argument of approximating any gradient vector field F of finite energy by periodic
electric fields implies a minimization result for W on A,,, without any periodicity assumption.
It is proven in [SS15al, Theorem 2] that:

Theorem (crystallization in 1D). ming, W = —mmlog(2mm) and this minimum is achieved
by the perfect lattice i.e. A = %Z.

Let us emphasize that as a consequence of the definition of W as a limit over large
intervals W does not feel compact perturbations of the points (as long as the configuration stays
simple i.e. two points of A are always distinct) hence no uniqueness of the minimizer can be
expected at the level of point configurations.

5.1.4 Point processes and correlation functions

In this paragraph we give some definitions about point processes (for a complete presentation
see [DVJ8S]).

Definition 5.1.6 (Point processes).
— Let X be the set of locally finite, simple point configurations on R. If B C R is a Borel set,
we let Ng : X — N be the map giving the number of points of a configuration that lie in
B. The set X is endowed with the initial o-algebra associated to the maps {Np, B Borel}.
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— A point process is a probability measure on X. The additive group R acts on X by
translations {0: }rer: if C ={xi,i € I} € X we let 0, -C = {x; —t,i € I}. It also acts on
the set P(X) of point processes in the natural way, by pushing-forward P € P(X) by the
map C — 0y - C for each t € R.

— A point process is said to be translation-invariant (or stationary) when it is invariant by
the action of R.

— If A € X is a periodic configuration of points on R with 01, - A = A, we may associate to
C the following stationary point process:

1 (L
Py = — dp,.Adt.
A L/(] O¢-A

In particular, we will use the stationary processes associated to Z and its dilations %Z (for
m > 0), which we denote by Pz, P 17 We may abuse notation, relying on Lemma and use
the same notation for the stationary “electric” probability measure (concentrated on A,, and of
finite energy) corresponding to %Z.

Definition 5.1.7 (Correlation functions). Let Py € P(X) be a point process. For k > 1 the
k-point correlation function py p, s a linear form on the vector space of measurable functions
or : RF — R, defined by:

Pk, Py (0r) = Ep, Z or(T1, ..., T))

Z1,...,2,€C| x4 ,x; pairwise distinct

Strictly speaking, it is only defined on the subspace of functions py such that the map C —
le,...,xkeclxi,xj pairwise distinct or(z1, ..., x)K) s integrable against dPy.

When the k-point correlation function exists as a distribution and can be identified with a
measurable function, we will write [ prpy instead of pi(pr). Heuristically, p (also called the
intensity of the point process) gives the density of the process at each point, while po(x,y) gives
the probability of having a point both at x and y.

Remark 5.1.8. If P is a translation-invariant (stationary) probability measure concentrated on
the class of admissible electric fields A, the push-forward Py of P by E +— idiv E + mog is
a stationary point process. Let us assume that W (P) is finite. Then:
— The one-point correlation function may be identified as (testing against) the function
P1,Py =M.
— The two-point correlation ps p, is well-defined as a Radon measure on R2.

Physically speaking, this is because there must be approximately m points per unit volume
in order to compensate (without overwhelming) the background charge —mdg, so that the
configuration is globally neutral (non-neutrality would generate too much energy). We will give

a proof of Remark [5.1.8 in Section [5.2.1]
Henceforth, if ¢ is a compactly supported, continous function on R? and C a point configu-
ration, we will denote by (p,C) the quantity

(0.C) =" > ox,y)

z#y|z,yeC

which is always a well-defined number since ¢ is compactly supported and C € X is locally finite.
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5.1.5 Statement of the results

We start by stating a quantitative version of the convexity argument on which the minimality
of W(Z) as in |SS15al Proposition 4.3.] relies:

Lemma 5.1.9. Leta; < --- < ay be any points in [0, N] and Ey,,y be the corresponding periodic
vector field as in Lemma[5.1.5 Let up; = aip — a; with the convention any; = a;+ N and let
bpi = up; — p. Then, for some universal constant C':

N/2 1 N
W(Efa,y) = W(Z) = Cp; ¥ ;min <

The proof is given in section The quantity by, ; in the right-hand side of measures
a local defect with respect to the lattice: the spacing error u,; — p between two p-th neighbours
(in Z two p-th neighbours are always at distance p).

We then state our main theorem and its consequence for the minimization problem. The
theorem gives for any translation-invariant probability measure P € P(A;) of finite energy a
lower bound on W (P) — W (Z) in terms of the two-point correlation functions of the stationary
point process associated to P.

b2,
L 1) : (5.1.5)

p2

Theorem 15. Let P be a stationary probability measure concentrated on Ay such that W (P) is
finite, let Py be the push-forward of P by the map and pa p, be the two-point correlation
function of Py. Then for any T > 1 and any function ¢ € C*([~T,T]?) we have

1

[ 020~ p2m)e| < CWP) + )} (W(P) - WD)

with C, depending only on |||, ||V@||ee and T, and C a universal constant.

The proof is given in Section The constant C,, appearing in Theorem [I5|can be made
explicit and is seen to be of the type:

Co = Cll¢lloo + [Vl |oo) T

for some power « which could be tracked down if necessary, and where C' is a universal constant.
An easy consequence of Theorem [15]is the following uniqueness result:

Corollary 5.1.10. For m > 0, the only minimizer of W on the set of stationary probability
measures concentrated on A, s P.,.

Theorem (15| also allows to track down the crystallization of the statistical mechanics model
via the convergence (in distributional sense) of the two-point correlation functions of to pa 7
when the inverse temperature 5 — +00, as stated in [SS15al Corollary 1.14.]. This was one of
the main motivations for this paper. More precisely, it is shown in [SS15a, Corollary 1.14.] that
any limit point of the canonical Gibbs measure (after averaging over translations) associated to
the one-dimensional Log-gas Hamiltonian has its two-point correlation function close to
p2,7 with a bound becoming sharp as 8 — oo.

5.1.6 Connection with the Log-gas Hamiltonian

Let us now briefly give a motivation for studying the renormalized energy and its minimiza-
tion (for a thorough study we refer again to [SS15b], [SS15a], [RS15] and to the survey [Serl5|).
Starting again from wpy, when the potential V in the definition is lower semi-
continuous and satisfies the growth assumption V(x) — 2log|z| — 400 (when |z| — +o00),
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it is known that for any sequence {23} x of minimizers of wy, the empirical measures puy =
% Zij\il 0z, converge weakly as N — 400 to some measure o on R, called the “equilibrium
measure”. We assume that the equilibirum measure pg has a compact support ¥ which is a
finite union of compact intervals, and is absolutely continous with respect to the Lebesgue mea-
sure with a density mg € L>(R). The result is in fact much stronger, since the convergence of
the empirical measures to pg holds not only for minimizers but almost surely under the Gibbs
measure associated to wy at any finite temperature (see [BAG97|, [HP0O]). The renormalized
energy appears as the Hamiltonian wy at second order: there is an exact splitting formula

wy (21,...,28) = N*F(uo) — Nlog N + NFx(v)

where F(uo) is a “first-order” potential energy associated to the equilibrium measure, and Fy
is a function of the finite point configuration Zi]\;1 0z,. To any such finite point configuration
we associate a probability measure P,, on X x A obtained by averaging over x € ¥ the electric
field Ey associated to the finite configuration v = S| x,, (for finite configurations such a
field always exists), translated by Nx:

P, = ]éd(x,EN(Nx—&-A))-

Let us emphasize that in this setting the scaling z; — 2, = Nz; is necessary: since we know that
the empirical measures % Zfil 0z, typically converge to a compactly supported measure po on
R it is relevant to scale the distances by N so that the spacing between two consecutive points
becomes of order 1. If {vy}n is a sequence of finite point configurations such that {Fnx(vy)}n
is bounded then it is proven in [SS15a, Theorem 3.] that up to extraction the sequence {P,, }n
converges to some admissible probability measure P (the definition of “admissible” is given
below) and lim infy_, 1o Fx(vn) > W (P). More precisely, the sequence of functionals {Fy}y
(for each N we can see Fly as a function of probability measures P € P(3 x A) which is infinite
outside the image of the map vy — P, ) has W for I'-limit (see [Bra02]), which implies that the
minimizers of Fyy (hence of wy) converge to minimizers of W. This reduces the second-order
study of the Hamiltonian wy in the limit N — oo to the study of W on admissible probabilities.

Definition 5.1.11 (Admissible probabilities). We say P € P(X x A) is admissible if
— The first marginal of P is the normalized Lebesgue measure on .
— It holds for P-a.e. (z, F) that £ € Ay, (4.
— P is invariant by the maps (z, E) — (x, E(A+-)) for all A € R (this is a weaker assumption
than the “T)\(,)-invariance” of [SS15a] but it is sufficient for our purpose).
When P is admissible, we denote by W the expectation of W under P:

W(P) = E' / W(E) dP(x, E).

For Log-gases, Theorem [15|implies the following uniqueness result:

Corollary 5.1.12. The equilibrium measure po and its density mo being fized, the only mini-
mizer of W on the set of admissible probability measures is given by

d.’ElE

Py = .
TR T @

(5.1.6)
In (5.1.6) we make a slight abuse of notation, it is not strictly speaking a tensor product since
there is a dependency on = in P_1_,. The probability measure Py € P(X x A) is rigorously

mq ()
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defined by duality : if F € C%(X x A) is a test function we let

dx
FdP, = | 22 [ F(z.)dP .
/ 0 /E|z|/ (@,-)dP_1 g

Let us note that P1, is not well-defined for m = 0, however we may assume that the set
{z € £, mp(z) =0} has zero Lebesgue measure. Corollary as well as Corollary are
proven in Section

The minimization problem is of physical relevance, indeed minimizers of an Hamiltonian
describe the behaviour of the physical system at zero temperature. It is believed (see e.g. [CKO07,
Conjecture 9.4.]) that for a wide class of interactions the minimizing infinite configurations are
lattices. The one-dimensional crystallization is somewhat easier to prove (see e.g. [EL62| for
positive results concerning the Coulomb interaction in 1d, [BL75|, [Kun74] for one-dimensional
long-range order, [ALS10| for zeroes of orthogonal polynomials), but the higher-dimensional
cases are largely open (see [The06] for a result in d = 2 and |[FT14] for recent progress in d = 3).

5.2 Proof of the results

5.2.1 Preliminary bounds on the density of points

Since we are dealing with two-point correlation functions, we will often need to bound the
variance (for some point process) of the number of points that lie in some fixed interval. For this
purpose we use a deviation estimate of [SS15a] which gives a lower bound on the renormalized
energy in terms of the local non-neutrality of a point configuration (together with the uniform
background). We summarize the consequences for correlation functions in the following lemma:

Lemma 5.2.1. If E € A; is an electric field, we denote by N(E,T) the number of points
of %div E + or that lie in the inverval [-T,T|. Let P be a stationary probability measure
concentrated on Aj.
— We hawve, for any T > 0,
Ep [N(E,T)] = 2T.

In particular, the one-point correlation function (the intensity) of the point process asso-
ciated to P may be identified as (testing against) the function py p, = 1. This, together

with the scaling relation (5.1.4)), proves the first claim of Remark[5.1.8
— The following bound holds:

/ N(B,T)*dP(E) < Cr (C+W(P)).

where Cr depends only on T and C' is universal.

The proof of such discrepancy estimates (especially the second point) involves technical
details of [SS15a] that we will quote when needed. It might be interesting to note that when
working with the alternative definition of a renormalized energy given in [RS15], [PS15], the
proof of similar estimates is more natural.

Proof. In what follows C is a universal constant, which may vary from line to line. Let E
be in A; and 7' > 1 and let A(E) := 5=div E + dg. Denoting by D(E,T) the quantity
D(E,T) = N(E,T) — 2T (D measures the “discrepancy” between the expected number of
points and the actual one, hence is a measure of local non-neutrality), [SS15a, Proposition 4.6.]

reads: DIE.T
/ dg > —CT + ¢D(E,T)* min <1, H)')
[—27,2T] T



5.2. PROOF OF THE RESULTS 201

where the density ¢ is defined in [SS15al, Proposition 2.1.] (we quote below the results that we
need) and ¢ > 0 is universal. From [SS15a, Proposition 2.1.i)], we know that g is bounded below
by —C, hence if 7 is a smooth cut-off function satisfying xyr = 1 on [-27,2T] and xr = 0
outside [—2(T + 1),2(T + 1)] with ||[Vxr|lec < 1, which we extend by xr(x,y) = x7(z) on R?,

we have:
(T

/)_(ng > —CT + ¢D(E, T)? min (1, 7

We also know from [SS15a, Proposition 2.1.iii)] that for such a function x7 the following bound
holds:

W xr) — [ rdg| < Crnllogn+ 1]Vl
where n is a boundary term bounded by the number of points of the configuration A(FE) in
&

[—3T, —2T] U [2T,3T]. Let v be the map 1 :  — x? min(1, ‘%l) Combining ((5.2.1f) and (
we easily get

Y(D(E,T)) <C(C+T+W(E,xr)+n(logn+1)).

Taking the expectation under P yields:
/w(D(E, T))dP(E) < C (c T+ / (W(E, xr) + nlogn + n) dP(E)) (5.2.1)

with n = n(F) bounded by the number of points of A(F) in [-3T,—2T] U [2T,3T]. Since P
is stationary the average number (under P) of points of A(F) in any interval of length 7' is
the same. Hence if we write Ny (F) = max(N(E,T),2) we have by stationarity (and using the
Cauchy-Schwarz inequality):

/nlog ndP < 4 (/./\/'_EclP)é (/(log;/\@)%lP)é . (5.2.2)

Obviously the right-hand side of (5.2-2)) also bounds the term [ n(E)dP(E). For any 0 < o < 3,
we may find C,, large enough such that

(J )} (Jwmsrar) < f ar)

Together with (5.2.1)) and (5.2.2) we thus obtain:

/w(D(E,T))dP(E) <C (C + T2 + /W(E, xr)dP(E) + C, (/Nidp)%ﬂj . (5.2.3)

From Definition it is easy to see that W(E,-) is additive in the second variable i.e.
W(E,x1+ x2) = W(E, x1) + W(E, x2). Using the stationarity of P we get for any R > 0:

R
JwEanarE) =5 [ [WiE s )dPEe = 55 [WEA g = xn)P(E).

Let us observe that the family of functions {x;} r defined as

o = L-RrR *XT
R fXT
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satisfy the conditions of Definition so that sending R to 4+o00 we get: [ W(E, xz)dP(E) =
W (P). This in turn implies that

/ W (E,x7)dP(E) = W(P) < / x;p) < CT(W(P)+C). (5.2.4)

Moreover since D(E,T) = N(E,T) — 2T an elementary computation shows that for any 0 <
a< % we have:

i
CC, ( / NidP) T< % / D*(E,T)dP + C, T (5.2.5)

where C, C, are the constants in (5.2.3)) and C!, depends only on a. Combining (5.2.3)), (5.2.4))
and (5.2.5)) we get for any 0 < a < %:

/ Y(D(E,T))dP(E) < CT(W(P) + C) + C/, T2 (5.2.6)

with a constant C!, depending only on o and C' universal. Equation implies (by distin-
guishing the events D < T and D > T) that [ D(E,T)*dP(E) = o(T?). The following is then
a consequence :
— We have [ D(E,T)dP(E) = o(T) hence [(N(E,T)—2T)dP(E) = o(T') but by station-
arity we have [N (E,T)dP(E) =T [ N(E,1)dP(E) so that in fact

/ N(E,T)dP(E) = 2T

for all T' > 0, which proves the first claim of the lemma.
— Since N(E,T)? < 4T? +2 [ D(E,T)? we also get a bound on the mean square number
of points [ N(E,T)*dP(E) as in the second claim of the lemma.
O

We now use Lemma to show that two-point correlation functions exist as Radon mea-
sures for point processes of finite renormalized energy.

Lemma 5.2.2. LetT > 1, let p € CO([=T,T)?) and let P be a stationary probability measure on
Ay such that W (P) is finite. Let also Py be the push-forward of P by the map E %div E+oR.
The following bound holds:

[ w.0dra©)| < camir)+ )

with C, depending only on |||l and T', and C' a universal constant.

Proof. For z € R and F € Aj, let us denote by N (F,T) the number of points of %div E + g
lying in [T, T]. Since ¢ is supported on [~T,T]? the following bound is obvious by definition

(. C) < N(E Tl
Integrating against dPy, we get
[ tw.crano)| <livll [ M(ETRAP(E). (5.2.7)

By Lemma we know that the right-hand side of (5.2.7)) is bounded by C,,(C'+ W (P)) which
concludes the proof. O
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Lemma has the following implication: if P is a stationary probability measure con-
centrated on A; such that W(P) is finite, then the push-forward of P by E + s-div E + 0
admits a two-point correlation function in distributional sense. Indeed, the linear form ¢ —
[ (¢, E) dP(E) is shown to be bounded by O(]|¢||s) uniformly for test functions in C°([-T, T)?),
for all T'. This proves the second claim of Remark (the case of probability measures con-
centrated on A, reduces to the former case by scaling as in )

5.2.2 Energy lower bound near the ground state for periodic configurations

We prove a quantitative version of the minimization of W on periodic configurations, as
stated in Lemma, [5.1.9

Proof. Let u,; = a;yp — a;, with the convention ayi; = a; + N, and let b, ; = u,; —p. We know

from (5.1.5)) that
QSlnl—Zlog )

Using a Taylor expansion of the function F': x + log|2sin x|, we get for each p,i:
Ty 4 1 X ruy, 1 X ruy TUp 4 1 X ruy,
F Pﬂ) —F|= Dy F/ s D, Pt L i
( N N ; N + N z; N N N ; N

1=
n 1F”( ) TUp,; 1 i\f: TUp,;
- T s _
2 P N N p N

2 sm

9 N/2
W(Eay) - W(2) = 57 Y <10g
p=1

for a certain x,; with

N
mupi| 1 TUp,i
. < ) _ 5 .
ol < e T, L[5
Observing that Zfil up; = pN, we have |z, ;| < 5F + |bpj\;‘7r and
1 (”“Pﬂ' ”p>2 ™ p.i > 1 by > 1 by 1 (5.2.8)

2 TN = o5 - n Pl . L.

i\ NN N2xZ; = 2(pr)* + (bp,m) 6 p?
The last inequality in |D is obtained by observing that 1 352 ij > 5 mm(%2 1) on R. Summing

the Taylor expansions ([5.2.2)) for i = 1... N gives, for any p < N/2:

2
. pm " TUp,i mp
2s1nN’—E log E F Tp.i) ( N _N)

An explicit computation shows that, for any z € R, F'"(z) = —%— > max (1 i), so by

sinz — ) x2
combining (5.2.8]) and ( we get
N 22 2
1 T bp,i I bp,i
2sm‘—210g _l 12max< N2 ,gmln p2,1 .

Finally, inserting the previous inequality for 1 < p < N/2 into (5.2.2)) gives

N/Z 4 2b2 1 b2
. y 2
W(E.y) — E max ( N2 , g min ( 2 1))

log 9 sin Lops

2 sm

log
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which yields the inequality

N/2 b2 .
W(E¢,3) — ) >C Z Z min < )

for some universal constant C'. O

5.2.3 Consequences for correlation functions

We now recast Lemma[5.1.9)in the context of stationary point processes associated to periodic
point configurations. The following lemma proves in particular Theorem 1 for periodic stationary
point processes.

Lemma 5.2.3. For any N > 1, let a; < -+ < ay be any points in [0, N] and Ey,,;, be the
corresponding periodic vector field. Let A be the corresponding infinite periodic configuration
in R, and Py be the stationary point process associated to A, defined in by averaging
translated copies of A over [0, N]. Assume that W(Ey,,,) is finite. The following bound holds:

[ 2~ 12214 < CulC 4 WE ) (W) - W(2)

for any p € CY([-T,T)?) with C,, depending only on ||¢||sc, [|V¢||oo and T > 1, and C universal.

Proof. Let ¢ € CH([~T,T]?) (without loss of generality we assume 7' > 1). Since W(Eq,y) is
finite we know by Remark [5.1.§| that ps p, exists as a Radon measure, we will abuse notation

and write [ pg a¢ for pa(¢). By Definition we have:

/ﬁm¢:EmK%M.

Let u,; = a;yp — a;, with the convention ayy; = a; + IV, and let us write the expectation
Ep, [(¢,)] as

Ep, [( / > 90(x7y))dPA =N /MN w(x,y))dt

r#y|z,yeC x;ﬁy|m,y€9t A
a1+1 +OO
~ Z/ D ((@ipk =ty gk — t+ Upipk) + O(@Qisk — t+ Up ik, Qigr — 1)) )dt-
kGZP—
(5.2.9)

The first equality in is simply an expllcltatlon of the measure Pj as an average of A on
translations in any 1nterval of length N as in , and the second equality amounts to writing
the sum of ¢ over couples of distinct points by taking a; as the “origin” of A on each interval

[aia (li+1]3
Yooelmy)= D ey tewr)= D el@—ty—t)+oly—tx—t)
r#y|r,y€b-A r<ylz,y€h:-A r<y|z,yeA

x
= > > plax =t aprp — t) + (arp — t,ar — t)
keZ p=1

o0
= > @itk =t vy — ) + P(@ighip — t airr — t)
keZ p=1
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and using the fact that, by definition, a;4x4+p = Gitr + Up itk

Fori=1...N,let ¢; =1 when |u;; — 1| <1 and ¢; = |u1;| otherwise, so that |uj; — ¢;| <
min (|by;|,1). Let us recall that the numbers b, ; are defined as b,; = u,; — p. The following
bounds are easily seen

N N N
Z‘Ulﬂ'—cﬂ < Zmin(|bu],1) and ‘N—Zci
=1 i=1 i=1

the second inequality following from the first one by observing that since ) ,_; u;; = N we have
N — Z 6= Zij\il (u1,4 — ¢i). We may now write that, by 1-periodicity of Z, and the fact that
¢ (i=1...N) is an integer:

N-— Zz 1
/ 0p,.zdt = / / dp,.7.dt + / 0p,.zdt N / (59t 7dt. (5.2.10)

The decomposition of (5.2.10) is meant to adapt the average of Z over translations in [0, N]
to the decomposition as a sum over translations in [a;, a;+1] used in (5.2.9), at the cost of an
error term which feels the spacing irregularities in A. We may haved use the same way of writing

Ep, [l )] as in (5:29), ie.

az+1 +OO
Ep, [(», / (i+k—t,i+k¢—t+p)+g0(i+k7t+p,i+k:—t)))dt
ai keZp 1

<) min (b, 1),

(5.2.11)
however expressions ((p.2.11]) and (5.2.9)) are not easy to compare. Using (5.2.10) when testing

against ¢ yields, by making a change of variables ¢t — ¢ + a; on each interval [0, uy ;]:

Ai+1 +oo
/PzPZSD NZ/ (ZZ@(ai+k—t,ai+k‘—t—|—p)+go(ai+k—t—|—p,ai+k:—t)> dt
a;

kEZ p=1
al “ 1 Nfzilil Ci
Z/ <90,9t'Z>dt+N/0 (o, 0 - Z) dt,
—1Ju1;

Since ¢ is compactly supported on [T, T]?, the terms (¢, 6; - Z) are bounded uniformly on ¢ € R
by (2T + 1)2||¢||s0, because there is at most (27" + 1)? couples of distinct points of Z in any
interval of length 2T. Since we may bound the lengths of the intervals |uj; —¢;| (i =1...N)

and |N — Zl 1 ¢i| according to , we get
1 N @41 —+00
/Pz,PZSOZNZ/ (ZZ@(ai*t+k,ai*t+k‘+p)
i=1ai

keZ p=1

(s —t+ ko p,a— 1+ R))dt + S min 14, 1) O(lo)
11

where the terms O(||¢||s) are bounded by (27" 4 1)?||¢||so. In the rest of the proof, we denote
by Cy, a constant, which may vary from line to line, depending only on ¢ via ||¢||o and ||Ve||«
and T.

Let us recall that a;4 = a; + ug ;. A first order expansion of ¢ yields, for any ¢,4, k, p such
that a;1r and ajtp4p lie in [T +¢,T 4 t],

[p(@ivk —t @irk — t + Uikyp) — @la; —t + k,ai —t + k +p)|
< min ( ) + min ([[Ve||oo|bk-+p.il 2/|¢l]o0)
< Cy (min(|bgi[, 1) + min(|bgip4l, 1)) . (5.2.12)
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Let us emphasize that the constant Cy, appearing in ((5.2.12)) is of the type C X (||¢]|oo +]IV¢]|s0)-
We may now compare (5.2.9) and the main term of (5.2.3) by summing the expansions
F.2.12):

1 N ait1 400
N Z/ ( Z Z ‘P(ai—kk —t,ai4 —t+ Up,z‘+k;) + <P(%‘+k — b4 Up itk Gitk — t)
i=1"Ya

keZ p=1

¢(ait+kaait+k+p)@(ait+k+paait+k))dt

1 N oo
@NZZm;”mm bgil, 1)
1=1k=1

where the numbers my, ; are given by

AN+1
M = / Lose[-14¢, 7+ as, pe|-T+t,T+4dL-
ai

Indeed, the first-order expansions (5.2.12)) allow us to bound every term in the left-hand side of
by a sum of four terms of the type min(|by |, 1). For t € [a1, an+1] the term min(|b |, 1)
appears only if a; —t and a4 — t lie in [T, T, which gives the expression for my, ;. Moreover
since there is at most N points of A in any interval of length N, if N > 2T we have my,; = 0 for
all k > N. The assumption N > 27 is not restrictive since we may always consider a N-periodic
configuration as rN-periodic for any integer r.

It is easy to see that m;; < 27 hence we may bound Zf\il Zfﬁvzl mz’i in the following way :

N N N N ans1 (N N
Z Z m%,z 2T Z Mki = QT/ (Z Z laie[—T+t,T+t]1ai+k€[—T+t,T+t}> dt
i=1k=1 i=1k=1 i=1k=1

AN 41
< 2T/ N2(6; - A, T)
ai

where NV (A, T') denotes the number of points of A in [—T, T|. By definition of Py we may re-write
the last term as N
N2(0;-A,T) = N / N2(C,T)dPy(C).

al

By Lemma we know that
[ APCTPA(C) < Cr(C+ TV (PA) = Cr(C + W(Eqoy).

so that we finally get:

1

Combining (5.2.3)) and ([5.2.3]) we obtain:
1 N N 1 N
[ (o2 = par )| < 5 303 musmin(bigl. 1)+ > min (bl D Olell). (5:2:14)
=1

i=1 k=1

N N
Somi, < NCp(C+W(E,)). (5.2.13)
=1k=1

If my; is nonzero it means that u,,; < 27 (since a; and ;1 lie in some common interval of
length 27") hence the spacing error |by ;| is larger than k& — 27". Consequently, if my,; is nonzero

for k > 3T, we have b’zji > % so that for any i, k, since T' > 1:

b :
my,; min(|bg;], 1) < 3T'my, ; min < kil , 1> . (5.2.15)
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Combining ([5.2.14]) and ([5.2.15|) gives:

’/(M,PZ—W,PA \<ZZ3Tmmmm(”“ ) me 14l 1) Ol l]so).

=1 k=1
(5.2.16)

The second sum in (5.2.16)) is controlled by Lemma as follows:

N 3 .
Jbz min (|by 4, 1) ( Zmln <|b )) §C’(W(E{ai})—W(Z))§

hence we have
1

1 N N b 1
’/pzpz — pg,pAgD‘ < CWNZZ ;“mln( % |,1> +C (W(E{ai}) — W(Z))2 .

Using the Cauchy-Schwarz inequality in , the bound (5.2.13)) for the sum of the m%l
and the bound (5.1.5) of Lemma we get:

1 N N % ’ ) |2 %
‘/(PZPZ Pz,PA)SD‘ <C, <N22m21> < szm< ; 1))
=1 k=1

i=1k=1

N|=

+C (W(Bay — W(Z))% <C,(C+ W(E{ai}))% (W(Bay) - W (2))

which concludes the proof of the lemma. Let us note that altough the bound of Lemma [5.1.9

12 2
only controls Z 1 Z]kv/ ? min (‘b’;é' ,1) we may easily bound Z 1 Zk. 1 min ('b’;g | ,1) as well

by periodicity. O

An inspection of the proof shows that C, may be taken as C, = C X (]|¢]|oo + |[|V|]00) T
for some o > 0 and C universal.

A reason for the “natural” role of two-point correlation function is that the renormalized
energy itself derives from an Hamiltonian with two-body interaction. This is what allows the
energy gap W(E(,,;) — W(Z) to be bounded below by quantities which are “pairwise” in nature
as in Lemma [5.1.9] The arguments of Lemma [5.2.3] could be applied to higher correlation
functions if we knew how to bound the higher moments of N'(C,T') uniformly for point processes
which are close to the ground state. It could be expected that for € > 0 small enough, the family
of point processes whose renormalized energy is < W(Z) + ¢ is such that a uniform bound on

pIN(C,T)"] holds for any n (one can think e.g. of harmonic deformations of the perfect
lattice). It would imply a control of the crystallization for any higher correlation function, in
the neighborhood of the ground state. Unfortunately we do not know if such a result is true.

5.2.4 Extension to the non-periodic case

Let us now turn to the proof of the main result, Theorem

Proof. In the following we denote by U, a constant, which may vary from line to line, depending
only on ¢ via ||¢||e and ||V¢||e and T and of the type C X (||¢||oo + ||V@||oo) T

Since W (P) is finite, let us recall that by Remark the two-point correlation function of
P, exists at least in distributional sense.
- Step 1: Choosing a large set where the controls are uniform. A straightforward adaptation
of [SS15a, Lemma 3.6.] (the only modification is that we are dealing with probability measures
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on the electric fields only, with no dependance on X) ensures that for any € > 0, we may find
a subset G, C A; such that G, has almost full P-measure, and on which we have a uniform
control for the relevant quantities. Precisely, the lemma ensures that:

1. P(G:) <e

2. The convergence (5.1.3)) in the definition of the renormalized energy is uniform with
respect to E € G..

3. Writing div E = 27(vg — 1), both W(FE) and vg(Ir)/R are bounded uniformly with
respect to £ € G, and R > 1.

4. Uniformly with respect to £ € G we have

lim  lim ][/ |E|? = 0.
Yo—r+00 R—+o0 Ir Jyl>yo

This is a technical assumption needed for the “screening” construction of Step 2.

Moreover, we may assume (this is Equation (5.3) in [SS15a, Lemma 3.6.v)]) that G, is almost
translation-invariant in that for any £ € G, E(A+ -) € G; for all A € R except for a set of
bounded Lebesgue measure (the set depends on E but its measure is bounded uniformly on G.).
Note that, strictly speaking, it is not precised in [SS15a, Lemma 3.6.] that one may choose G
both of almost full P-measure and almost translation-invariant, however it is a consequence of
Equation (3.6.) in [SS15a, Lemma 3.6.v)]), and is written as Equation (7.6) in [SS15b, Lemma
7.6] (which handles the purely 2D case, but from which [SS15a, Lemma 3.6.] is essentially
deduced).

For € < 1, let P. be the probability measure induced by P on G, let P, . be the push-forward
of P. by the map F — %div E + dg and let py p, . be the two-point correlation function of
Py .. In the rest of the proof we make the following abuse of notation: we denote by 1. both
the characteristic function of G, and its push-forward by the map E — %div FE +r. We claim
that

’/(PzPA — p2,p, ) P| = 0e—o(1).

Indeed, we know that [ pa p, |¢| = Ep, [(J¢],-)] is finite (see Lemma|5.2.2)), and that P(GS) < e.
By uniform continuity of the integral, if € is small enough, then |Ep, [(¢, )] — Ep, [1a. (¢,")]|
is arbitrarily small. This proves the claim, because we also have, by definition of P .:

1
/pzypA,eSO = EPA,e [105 <907 >] P(G )

- Step 2: Obtaining periodic fields by screening. We now construct, for R large enough and for
each E in G., a periodic field Eg of period R, which approximates E, and we use these fields
to approximate P. by an average of stationary measures on A; associated to periodic electric
fields.

To this aim, we apply [SS15a, Proposition 3.1.]. This screening result allows us to truncate
FE outside of a large interval, to approximate E on this interval by some field which is “screened”
so that we may paste identical copies of it in order to get a periodic electric field on R, whilst
letting £ unchanged in some large interval. For R > 0 we let Ir = [-R/2, R/2].

Let a > 0. We get from [SS15a, Proposition 3.1.] that there exists Ry > 0 (depending on
¢ and «) such that for every integer R > Ry, for every E € G., there exists a vector field
Er € L (Ig x R,R?) (for ¢ < 2) satisfying:

i) Eg-v =0 o0n 0l x R, where 7/ denotes the outer unit normal.
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ii) There is a discrete subset A C I such that

diVERZQﬂ' (Z5p—5R) iIlIRXR.

pEA

ili) Er(z) = E(z) for z € [-R/2+ aR,R/2 — aR)].
iv)
W(ER7 1IR)

7 <W(E) + .

The “screened” property is expressed by i), the point iii) shows that E is unchanged on a large
interval and iv) gives an upper bound on the new energy.

For any integer R > Ry, we extend the electric fields Er periodically, and make them
gradients. This amounts to first pasting together identical copies of Er to make it periodic
of period R (the point i) allows us to make such a construction), and then considering the
L?-projection of the constructed field onto the space of gradient vector fields, which, together
with point ii) guarantees that we end up in the class A;. It is proved that the projection can
only decrease the energy, so that iv) is conserved. Moreover, projecting onto gradients leave the
divergence of Er unchanged, so that iii) becomes:

div Eg(z) = div E(2) for v € [-R/2 + aR, R/2 — aR).

Details are given in the proof of [SS15a, Proposition 4.1.], and we only state the conclusions:
we get, for each E € G¢, and any R > Ry (let us emphasize that Ry depends on € and «) an
electric field Er which is R-periodic, which coincides with £ on [~R/2 + aR, R/2 — aR], and
such that -
W (ERr,11)
R

- Step 3: Approzimate stationary processes. For each F € G, and any R > Ry, we now consider

<W(E)+ a.

the stationary probability measure f_R]éaz dg,. pdt on A; associated to Er by averaging Eg over

translations in [~R/2, R/2], and we define P® as the pushforward of the probability measure
P. by the map

R/2
E»—>f Op. 7 dt
“R/2 br-Er

(let us note that this map is only defined on G¢, but P. itself is concentrated on G.). The

process PR is stationary as an average of stationary probability measures, we denote by Pﬁa

its push-forward by the map E — %div E + g and we let pgf Py be the two-point correlation

function of P/{% .- We now claim that

[ Ghin,. = prny o] < oosel1) + aCL(W (P) 4 ).

Indeed, by definition we have Ep, _[(¢,-)] = fPQ,PAﬁSO, and

n R/2 1 [R/2—2aR
_E ][ ,e-dt:/ E 0,)] dt
J [ 00 ] R )

1 —R/2+201R 1 R/2
+/ Eor [(p,0:)]dt + = Epr [(p,0;)]dt.
o e letdeg [ B o)
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Since ¢ is compactly supported and since div Er coincides with div E on the interval [—R/2+
aR, R/2 — aR], if R is large enough (depending on ) we have P.-a.s. that div Er(- —t) =
div E(- — t) for t € [-R/2 + 2aR,R/2 — 2aR)] (i.e. the screening and periodization have not
affected the point configuration on a large interval). It means that for R large enough, we may
express the first integrand in the right-hand side of as

1

Epr_[{0,00)] = Ep,  [{p,00)] = PG e [La. (#:0:)] -

The probability measure P is, by assumption, translation-invariant hence so is P, so that
for any t € R we have

Ep, [1a. (0. 01)] = Ep, [16.(0-1) (¢, -)]

which in turn gives

Ep, . [(9,00)] = ———Fp, [1a. (p,00)] =

P(G.) Ep, [16.(0-¢) (¢, )] -

1
P(Ge)

We now claim to control the default of invariance of Py . under translations in the following
way:

1 [R/2m2eR R—4aR
il itEp, (9,00 — 2B (6, ]] = 0nnell)
R J_Rrj242ar R

with a 0p—o0(1) depending on ¢, e, P.
Indeed, we have, for t € [-R/2 4+ 2aR, R/2 — 2aR):

1
P(G.) / (0,C) (1. (0—¢ - C) — 1. (C)) dPA(C).

Integrating (5.2.4) between [—R/2 4 2aR, R/2 — 2aR] yields:

Ep, . [(¢,00)] = Epy . [(¢:-)] =

1 [R/2-2aR R — 4aR
L / dtEp, , [(,00)] — ————Ep, . [(¢,")]
R J_Rj2124R R

R/2—2aR
N ;%/R/2+2 Rdt (1Ga) /<@’C> (1c.(0-¢ - C) = 16.(C)) dPA(C)

1 R/2—2aR
— m /dPA(C) (p,C) /—R/2+2aR dt (1g.(0_¢ - C) — 15.(C)).

We know that for E € G, there is a set I'(E) such that |[T'(F)| < C. (for some constant
depending only on G.) and if A ¢ T'(E) then E(- — A\) € G.. This property is clearly pushed
forward at the level of the point configurations. This yields the following bound

R/2-20R
‘/ dt (1. (60— - C) —16.(C))| < Ce

—R/2+2aR

and since [dP,(C) (|¢|,C) is finite (again, by Lemma [5.2.2)) we get

C
< g, P

R

1 R/2—2QR R _ 40[R
[ im0 - T (6.0

R J_Rrjat2ar
with a constant depending on €, ¢, P, which proves (5.2.4)).
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We are now left to bound the two error terms in (5.2.4)), for which we have, applying Lemma
[£.2.2)in the last inequality:

1 R/2
— E ©, 6
= /R oo B (2,000

The other term % 5/22_%}2 E PR [(p,0:)] dt is bounded the same way, moreover with the same

dt < 2asupEpp_[{ll,0,)] < aC,(W(P) + C).
teR €

application of Lemma. [5.2.2] we éet

1aBpg_((p. )] < aCL(W(P) +O).

Combining (5.2.4]) with the estimates (5.2.4)), (5.2.4), (5.2.4)), we have
Ceopp —
[y, = prny | < ST v ac,(T(P) + )

which proves the claim ((5.2.4)).

- Step 4: Using the result of the periodic case. We may now come back to the proof of Theorem

_ n :
Let us fix n > 0, and take o = CLOT(P)0) where C, and C are the constant in ([5.2.4]).

Then for R large enough (depending on o and G.) we have

Core,p
‘/(p?,pA,E - p2,PA,g)s0’ <n+ %

Let us now apply Lemma for the periodic case. For each E (under P.), and for any
R > 0, we consider the stationary measure fié% 0. i, dt whose energy is finite P.-a.s., and we
denote by p2 £ r the two-point correlation function of its push-forward by the map . From
Proposition [I5] we get

[ 20— prn)e| < CoC+W(ER) (W(ER) - W(@) "

and integrating this inequality against dP.(F) gives (using Jensen’s inequality in the last line)

‘ /R (p2ip, . — pa,pz)cp’ = ‘ / dP.(E) /R (pren—rar) gp‘
< Cp(C+ W(PI)? (W(PF) - W(Z)>1/2

By construction we know that for R large enough (depending on G. and «) we have P.-a.s.
W(ER) < W(E)+n
hence ([5.2.4)) gives, for R large enough
—_ l —
[ ke~ )| < ColCH TR+ ) (W(R) 0= W(2)
Combinining (5.2.4) and (5.2.4)), we get

Coe — 1 1/2
’/(PZPA,E - P2,PZ)‘P‘ <n+ %’P + Cp(C+ W (F:) +n)2 (W(Ps) - W(Z)) :

1/2

Since [|W(E)|dP(E) is finite (because W(P) is finite and W is bounded below on 4;), and
since P(G¢) < g, by the uniform continuity of the integral we know that

W(P.) = W(P) + 0-—0(1).

Combining (5.2.4), (5.2.4) and (5.2.4), taking n arbitrarily small, ¢ arbitrarily small and then R
arbitrarily large, we conclude the proof. O
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5.2.5 Uniqueness results

We now turn to the proof of the uniqueness results for minimizers as stated in Corollary
and Corollary First we observe that the invariance condition in the definition
of admissible measures is equivalent to translation-invariance of the disintegration measures.
Let us briefly recall (for a precise definition see [AGS08, Section 5.3.]) that in this context if
P € P(X x A), the disintegration measures (with respect to the normalized Lebesgue measure
on X) form a family {P*},cx of probability measures (concentrated) on A such that for any
measurable function f € L>*(X x A) we have

L. Jwmaren = [ [ s mape)

Remark 5.2.4. Let P be an admissible probability measure on ¥ x A, and let {P*},ex be
the disintegration measures of P on A with respect to X. Since the first marginal of P is the
normalized Lebesque measure on Y we have, by defintion of disintegration measures, for any
continuous map f € L'(dP):

Brlf) = f do [ fla. EYIP(D).

For any smooth cut-off function x on R and any A € R we have, by the invariance property of

" ][Ex(x)dx/f(x,E)dP’”(E) - ][Ex(x)d:n/f(:p,E()\+-))dP“”(E).

A standard approximation arqgument (by taking a sequence {xn} converging to a Dirac mass at
xo) shows that for any xo € X, any A € R we have

/f(fCo,E)dPxO(E):/f(:vo,E(A+~))sz°(E)v

hence P*° is translation-invariant for all xo € 3.
Conversely it is easy to see that if {P*},cx is a measurable family of translation-invariant
.. . d . ..
probability measures such that each P* is concentrated on Amo(m), then %@PI is an admissible

probability measure. In particular, Py as defined in (5.1.6) is admissible.

We now give the proof of Corollary [5.1.10] and Corollary [5.1.12
Proof. 1t is clear, from the crystallization result of section that P1, (resp. P) is indeed

a minimizer of W (resp. of W) on stationary measures P(A,,) (resp. on admissible probability
measures). It remains to show the uniqueness. By the scaling relation , it is enough to
show that P is the unique minimizer of W on P(A;) to prove the first claim. If P € P(A;) is
another minimizer we have W (P) = W (Z) hence by Theorem if Py denotes the push-forward

of P by the map (5.1.2)), we have
P2,Py = P2,Py,

where po p, is the two-point correlation function of Py and py p, is given in distributional sense

by: )
P27PZ=/0 d> 0 St

i€Z JEL, jFi
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Let us note that, in general, two point processes sharing the same two-point correlation
function may be distinct (for conditions under which two point processes sharing all their k-
point correlation functions are equal, see [Len73|), but here the rigidity of the lattice structure
ensures that Py = Py.

Let {fn}n be an increasing sequence of continuous functions converging pointwise to the
characteristic function 1j9 1 and let ¢, 7(z,y) := fu(z — y)1_p1(2)1—71)(y) for some fixed
T > 0. The sequence of continuous compactly supported functions {¢,, 7}, converges pointwise
to (z,y) = lo—yeoilj—7,1)(*)1—17)(y). We have for any integer n: [ wn1p2p, = [@nrp2z =
0 and the Lebesgue dominated convergence theorem ensures that:

/]—x—ye]O,l[l[—T,T] ()1 =7, (y)p2,p, (2, y) = 0.

Hence we get that Py-a.s. there is no couple of points z,y € C N [—T,T)] such that = —y €]0, 1].
We may apply the same argument for any interval |k, k + 1] (k € Z) and for any T € N, and
since a countable union of events with zero Py-measure has zero Pj-measure it implies that
there is Pp-a.s. no couple of points x,y € C such that x —y ¢ Z. Hence C is Py-a.s. a subset of
(a translated copy of) Z. Moreover we know from Lemma that average number of points
in [T, T] coincides with that of P for all T'. Since P, is stationary this ensures that in fact
P = Py and proves the first claim of uniqueness. -

To prove the second claim, let P € P(X) be a minimizer of W on the set of admissible
probability measures, and let us write its disintegration P = d%‘z ® P* where z-a.e. in X,
P? is a probability measure on Amoﬁand since P is admissible we also know that P?® itself

5.2.4

is translation-invariant, see remark Since P minimizes W, the stationary probability
measure P* minimizes W over P(A, () for almost every = € ¥. By the first claim, this means
that P* = P_1_, for almost every x € ¥, which in turn ensures that

mq ()

p_B o p j2
DS @@L
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Chapitre 6

Etude du gaz de Coulomb a deux com-
posantes

Ce chapitre est constitué de 'article “Large deviations for the two-dimensional
two-component plasma” [LSZW15] écrit avec S. Serfaty, O. Zeitouni et avec une annexe par
W.Wu.
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6.1 Introduction

6.1.1 General setting

The two-dimensional two-component plasma is a standard ensemble of statistical mechanics,
in which N particles of positive charge and N particles of negative charge interact logarithmically
in the plane, cf [Fro76/GP77,DL74,For10]. The associated Gibbs measure at inverse temperature
B > 0 is given by

dP%(X:N,Y}N) = e_ng(XN’?N)dX:N dVN, (6.1.1)

N7ﬁ

where Zy g is the normalizing constant, i.e. the partition function

ZN,ﬁ = / e_ng(XN’?N)dXNd?N, (612)
A2N
and we have written
wn(Xn, Ya) = Y —loglz; — a;] —loglyi —y;| + Y. log |z —
1<i#j<N 1<i,j<N

for any N > 1 and any N-tuples Xy = (x1,...,zn) and Yy = (y1,...,yn) of points in, say,
the unit cube A := [0, 1] of R2. The notation dX n dYy refers to the Lebesgue measure on A2V
The choice of 5/2 instead of 5 in the exponent of is made in order to match the existing
literature. In physical terms, wy ()? N VN) computes the two-dimensional electrostatic (or log-
arithmic) interaction of the point charges (z1,...,x2yx) and (y1,...,yn), the former carrying a
+1 charge and the latter a —1 charge.

We are interested in proving a Large Deviation Principle (LDP) on the Gibbs measure IP’?V,
which is inspired by |LS15], where such a result was obtained for the one-component plasma
in arbitrary dimension. The (say, two-dimensional) one-component plasma corresponds to a
system of point charges which all have same sign and interact logarithmically, but that need
to be confined by some external potential, acting in effect like a slowly varying neutralizing
(opposite) charge distribution.

Motivations for studying two-component plasmas are numerous. Besides its intrinsic interest
as a toy model for classical electrons and ions, it is also related to the so-called Sine-Gordon
model: the grand canonical partition function of the two component plasma can be related to the
Euclidean version of the sine-Gordon partition function, and the Coulomb gas on a lattice itself
related to the XY model and the Kosterlitz-Thouless phase transition (see the review [Spe97]
and references therein). Another motivation, which will be described in more details in the
appendix, is the connection with the partition function of “complex multiplicative Gaussian
chaos' (cf. [LRV15]), which may be formally written as [ ¢®"(*) dz, where h(z) is the Gaussian
Free Field. This question is itself related to height functions of dimer models and to the Lee-
Yang theorem for the XY model. It turns out that computing moments of e’®* makes the Gibbs
measure of the two-component plasma appear and, as described in the appendix, our results
yield a rate of decay in terms of 5 of the tails of this partition function.

Due to the presence of point charges of opposite signs, the system is unstable at low tempera-
ture because the thermal excitation does not compensate the energetical trend for configurations
with —oo energy, in which at least two particles of opposite signs collide. The domain of stability
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of the system (i.e. the range of the parameter § for which the integral in converges, SO
that makes sense) was found to be f < 2 in [DL74], together with a first bound on Zy g.
A more accurate estimate and the existence of the thermodynamic limit were proven in [Fro76)
by Euclidean quantum field techniques, and [GP77] by classical methods (the question of obtain-
ing it by classical methods was apparently first raised in [SM76]). The result can be summarized
as follows.

Proposition 6.1.1 (Gunson-Panta, [GP77]). For any 5 < 2,
log Zn 5 = gNlogN + CgN + o(N), (6.1.3)

with a constant Cg and an error o(IN) both depending on 3.

Later, a number of other results, such as the asymptotics of two-point correlation functions
and the thermodynamic properties of the two-component plasma, were obtained in the physics
literature. We refer to the review |[Sam03] and references therein.

For any X N ?N, let u} and py be the empirical measures associated to the positive and
negative charges

T T
+ . -
Ky = N ?:1: Oz Uy = N ;:1: 5?/1"

A natural question is to ask for the large N behavior of these macroscopic quantities in the
space P(A) of probability measures on A. At the microscopic level, we may also ask whether
the point process induced by IP’]BV has a typical behavior. In this paper, we give an LDP for
a spatially averaged microscopic behavior and as a consequence we show that both empirical
measures ,u}, py converge a.s. to the uniform measure on A. We remark that in case 3 scales
as 1/N, a LDP and Gaussian fluctuations limits for these quantities are derived in [BG99|; the
techniques needed to handle the scaling in this paper are completely different.

6.1.2 Main result

Before stating our main result, we need to introduce some notation and concepts, which are
all “signed" versions of those introduced in [SS15b,LS15] (in the latter papers, all the charges
have the same sign). We denote by X’ the set of locally finite signed point configurations with
the topology of local convergence (for more details see Section [6.2]). If (X' N,?N) is a pair of
N-tuples of points in the square A, we may see it as an element of the space X' by associating to
Xy (resp. Yy) the point configuration vl =N 0y, (vesp. vy i= SN, 6,,). When starting
from ()? N YN), we first rescale the associated finite signed configurations by a factor VN to get

N N

At A

D =D 0 Ne, PN = D Oy
i=1 =1

and we then define the map
in: (RN x (RN — P(Ax X)

(XN,?N) — Pﬂ

T (6.1.4)
() = [, Q@b 0F03)

dx

where for any Borel space X, P(X) denotes the set of Borel probability measures on X and
6, denotes the action of translation by a vector A € R?, that is, for v € P(R?), we have
O v(A) = v(A + A) for any measurable set A. The variable z is a “tag" that is keeping track
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of the point x € A around which the configuration was blown-up, and this way we build from
any signed point configuration the law of a “tagged signed point process', ]5( Tn V) The laws
of these signed point processes will easily be shown to be tight, and any accumulation point as
N — oo is a stationary probability measure on A x XY (i.e. the law of a stationary tagged point
process) whose first marginal is the Lebesgue measure on A. We will generally denote with
bars the quantities corresponding to tagged point processes and without bars the quantitites
corresponding to non-tagged point processes.

Throughout we will always consider the subset
{P €P(AxX),P(Ax X) = Leb(4), VA Borel |,

and continue, with some abuse of notation, to denote it by P(A x X’). This assumption allows
us to consider the disintegration probability measures P* € P(X) for any z € A. We denote
by Piny(X) the set of stationary laws of signed point processes, and we denote by Piny(A X X)
the set of stationary laws of tagged signed point processes, that is those P € P(A x X) so that
the corresponding disintegration measure P? is stationary for Lebesgue-a.e. = € A. Finally we
denote by Piy.1(A x X) the set of P € P(A x X) such that P has total intensity 1 (i.e. there
is, in average, one point of each sign per unit volume).

In Section we will define an interaction energy functional W on the space Pinv (X). Tt
can be understood as the expectation of the infinite-volume limit of the logarithmic interaction
in the system of charges described by the signed configurations. We then define the interaction
energy of P € Ppy(A x X) as

W(P) := //\W(Px)dx. (6.1.5)

Next, we define the specific relative entropy of the law of a signed point process as the
infinite-volume limit of the usual relative entropy with respect to a reference measure.

Definition 6.1.2. Let P € Pin(X). The relative specific entropy ent[P] with respect to the
signed Poisson point process of uniform intensity 1 is given by

o1 s
ent[P] := Rh_r)réo ﬁEnt (Pr|IIg), (6.1.6)
where Pr denotes the restriction of P to Cg := [-R/2,R/2]%, and

Ent(plv) = {flog Wy if pis absolutely continuous with respect to v,

otherwise
1s the usual relative entropy. The reference measure is the law of a signed Poisson point process
I1° = II' @ I,
which is nothing but the law of two independent Poisson point processes of intensity 1.

The good definition of such an infinite-volume relative entropy ent is known in the “non-
signed” case where one deals with standard point processes (see e.g. [RAS09|, and [LS15] for
an extension to the case of tagged point processes), and we recast its properties in the setting
of signed point processes in Section We may then define the specific relative entropy of
P € Puv(A x X) as

ent(P) ::/Aent[P“]d:ﬁ. (6.1.7)
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Using ([6.1.5)) and (6.1.7)), we introduce the function F4 defined on the space Piny1(A x X),

Fo(P) = {QW(PHm[P] if ent[P] < +o0,

) (6.1.8)
400 otherwise.

We let .TSBC be the lower semi-continuous regularization of ?5 on Pinyv,1(A x X) ie.

e, = _
P).=1 inf .
T3Py i= il %
In particular it is standard that Fs and ?i; have the same infimum on Piyy1(A x X). We
remark that we do not know whether Fg is lower semi-continuous, and in particular we do not
rule out the possibility that Fg = .TSBC.

When 8 < 2 is fixed, we let Py be the random variable iy (Xy,Yy) (as in (6.1.4)) when
(X" N,?N) are sampled according to P]ﬁv, and we let ﬁfif be its law. In other terms ﬁ?\, is the
push-forward of IP’?V by in.

We may now state our main result.

Theorem 16. The sequence {?’?\,}N satisfies a Large Deviations Principle at speed N with good
rate function given by
Fy - inf Fps.
B pen(axx)” P

As a consequence we obtain the following expansion for log Zy g with 8 < 2:

Corollary 6.1.3. For any 8 < 2 it holds

B ) —
log Zn 3 = =Nlog N — f N +o(N
0gZn,p = 5NV log Pm};l(u)fﬁ +o(N),

where the term o(N) depends on 5.

In comparison with Proposition we now have a characterization of the constant Cpg
in front of the term of order N. We also have information on the asymptotic behavior of the
empirical measures.

Theorem 17. The sequence {(uj, y)}n converges ]P’ﬁ,—a.s. to Leb, ® Leb,, where Leb, is
the uniform probability measure on A.

We emphasize that in the present case, in contrast with the one-component case, the optimal
macroscopic distribution of the points cannot be deduced from the leading order behavior of
the system. Indeed, a leading order LDP (see Section only shows that ,u} and py have
the same limit. The next order analysis of Theorem [I6] allows to identify at the same time the
macroscopic distribution of the particles, and their microscopic behavior.

6.1.3 Interpretation and method
a. Comparison with the one-component case

To explain these results and their proof, it is useful to return to the case of the one-component
plasma, as was studied in |[LS15] using tools introduced in [SS15b,RS15,PS15] (see also [Serl5|).
We recall that in the one-component plasma, the particles have the same (positive) sign and
are confined by an external potential, which can be shown to act like a neutralizing negative
diffuse background charge. It is well-known that the macroscopic distribution of the particles
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can be identified by a leading order LDP (at speed N?) to be the so-called equilibrium measure,
uniquely determined by the confining potential (cf. [HP0O0,BAZ98|). Then the next order LDP
analysis performed in |[LS15] allows to identify the behavior of the particles at the microscopic
scale as minimizing a certain rate function, which is of similar nature to (6.1.8). This analysis
relied on expressing the logarithmic interaction energy via the electric field, or electric potential
that the set of charges generated. A crucial tool was then the so-called screening result, which
allows, via the electric field formulation, to localize the interaction energy in microscopic boxes
which can then be seen as (essentially) independent and non-interacting.

The main difference between the one-component and two-component cases is that in the one-
component case, the interaction energy has a sign and is bounded below, hence no configuration
can give a large contribution to the partition function. In the two-component case, the interac-
tion energy is not bounded below, and it is only thanks to the entropy term, corresponding to
the volume in phase-space, that configurations with very negative energy do not weigh too much
in the partition function. Another heuristic way of saying this is that the Lebesgue measure (in
phase-space) behaves like a “Lebesgue repulsion" which prevents particle of opposite signs from
getting too close to each other too often, and this is only true because § < 2, i.e. when this
Lebesgue repulsion is strong enough. In other words, energy and volume considerations always
have to be worked with jointly, and we always need to exploit the fact that g < 2.

b. Positive part of the energy and dipole contributions

Because the number of positively charged particles and the number of negatively charged
particles are the same, it is natural to see a configuration as a set of dipoles of particles of
opposite sign, matched by nearest neighbor pairing (or minimal matching, also called minimal
connection). It is tempting to try to prove directly an LDP on the pairing, but we have not been
able to do so. Instead, we exploit the idea of matching (borrowed from |GP77]) in conjunction
with simple computations originating in [SS15b, RS15], which relies on the expression of the
interaction energy via the electric potential generated by the system of charges. We rewrite
the interaction energy as the sum of a positive part and a part corresponding only to nearest
neighbor interactions, which can be thought of as a “dipole contribution". More precisely for
each x; or y;, we define

r(Tr;) = min min |r; XTj min |r; i
2 72 ] i 3 J 72 ] K3 yj

to be the (half) nearest neighbor distance truncated at 1. We then prove the identity, valid for
every pair of N-tuples X, Yy with distinct coordinates:

L 1 N N
wn (XN, YN) = 5 /R2 |VVy |2+ Zlog r(z;) + Zlogr(yi). (6.1.9)
i=1 i=1

where

N
Vy,» = log * (Z 5;(;;(41”0) _ Z 5;(%)))

=1 =1

and where 5;(577) denotes the uniform measure of mass 1 on the sphere of center x and radius 7

(for x € R? and n > 0).

The identity is similar to the “electrostatic inequality” found in |[GP77] (however we
do not discard the positive term as they do), and it allows us to use the method of |GP77]|, which
controls the negative (and possibly unbounded) dipole contributions. The analysis of |GP77]
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exploits in a quantitative way the fact that § < 2 and that the Lebesgue repulsion dominates
the dipole attraction.

Similarly, the interaction energy W is the sum of two terms, one positive part corresponding
to the large N limit (after blow-up at the scale v/ N) of the positive quantity % Jz2 IVVN 2

)
and a negative part corresponding to the large N limit of the nearest-neighbor contributions

SN logr(zi) + i, logr(y:).

c. Interpretation of Theorem

The way to read our result at the microscopic scale is to say that the Gibbs measure must
concentrate on minimizers of 3. Unfortunately, we do not know whether a minimizer can be
shown to be unique, but in any case it reduces to a minimization problem (with the structure of
a free energy as in statistical physics) which should identify some optimal random signed point
processes. For comparison, in the two-dimensional one-component case, the analogous result
allows to say that the law of the well-known Ginibre point process minimizes the rate function
for a certain value of 3. We may interpret the minimization of F 4 heuristically as follows. The
term W(P) in favors signed configurations which minimize the logarithmic interaction,
hence we expect that it favors short dipoles (and as such, is clearly not bounded below). On the
contrary, the specific relative entropy in favors disorder, and thus tend to “separate’ the
dipole points. When 5 < 2, the sum of the two terms can be shown to be bounded below. The
competition between the two terms depends of course on the value of 5. When f is small (i.e.
the temperature is large) then the entropy term (or “thermal agitation") dominates, whereas
as (3 gets larger and approaches 2 the dipole attraction gets stronger, until the system can no
longer sustain (or spontaneously generate) dipoles.

d. Plan of the paper

The rest of the paper is organized as follows: in Section [6.2] we gather all the definitions
and notation that we use, and we present the rewriting of the energy which isolates the dipole
contribution. In Sectionmwe use the results of |[GP77] to prove that .TSBC is a good rate function
and we establish the main result, postponing some of the main proofs. In Section [6.4] we recall,
for the reader’s convenience, the main computations of |[GP77] (on which we rely heavily). In
Section [6.5 we prove the LDP lower bound, and in Section [6.6] we prove the LDP upper bound.
Section is devoted to the proof of the large deviations principle for the empirical measures
(1%, ), at the leading order speed (which is N?).
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6.2 Definitions, notation, and preliminary results

6.2.1 General notation

If X is a topological space we denote by P(X) the set of Borel probability measures on X,
and if P is in P(X) we denote by Ep [-] the expectation under P. We endow the space P(X) of
Borel probability measures on X with the Dudley distance:

dp(x)(P1, P2) = sup {/F(dpl —dP,)| F € Lip1(X)}

where Lip; (X) denotes the set of functions F' : X — R that are 1-Lipschitz with respect to dx
and such that || F'[|oc < 1. Tt is well-known that the distance dp(x) metrizes the topology of weak
convergence on P(X). We denote by C°(X) (resp. C?(X)) the space of continuous functions
(resp. with compact support on X), and by Cp(X) the set of continuous, bounded functions on
X.

If R > 0 we let Cr := [-R/2, R/2]? be a square of center 0 and sidelength R. If U is a Borel
subset of R? we denote by |U| its Lebesgue measure (or area). If (X,dx) is a metric space,
x € X and r > 0 we denote by B(z,7) the closed ball of center x and radius r for dx. In R? we
will use the notation D(x,r) for the closed disk of center x and radius r. If A C X we denote
by A its interior and by A its closure.

a. (Signed) point configurations

If A is a Borel set of R? we denote by X°(A) the set of locally finite point configurations in
A or equivalently the set of non-negative, purely atomic Radon measures on A giving an integer
mass to singletons (see [DVJ88]). We let XY := X°(R?). We endow the sets X°(A) (for A Borel)
with the topology induced by the topology of weak convergence of Radon measure (also known
as vague convergence or convergence against compactly supported continuous functions).

If B is a compact subset of R? we endow X°(B) with the following distance:

dXO(B)(Cl,CQ) = sup {/F(dCl — dC2)| Fe Lipl(B)} .

Similarly we endow XY := X°(R?) with the following distance:

B 1 dxo(cy) (C1,C2)
dxo(C1,Ca) = ;; ok ((cl(ck) +C2(Ck)) v 1> '

We now define the analogue of X(A4) and XY in the setting of signed point configuration.

Definition 6.2.1. A signed point configuration in R? (resp. in A) is defined as an element
C=(CH,C7) of X := X0 x X0 (resp. X(A) := X(A) x X(A)). We say that C is simple if the
mass of each singleton is exactly one and the supports of CT and C~ are disjoint.

We endow these product spaces with the product topology and the usual 1-product metric
(the sum of distances componentwise). We will sometimes abuse notation and write f fdC as
the integral of a test function f against the signed measure dCt —dC~. For A C R? a measurable
subset we let [C|(A) be the total number of points in A i.e. |C|(A) :=CT(A) +C~(A).

Definition 6.2.2. We define the “pruning” map Pr: X — X by associating to any signed point
configuration C = (C*,C™) the Jordan decomposition of the signed measure C* —C~.
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The effect of Pr is to remove any dipole which would not be felt at the level of the signed
measure. For example, if C = (84 + 0z, 0z, + 02,) With z; € R? distinct, we have Pr(C) =
(5961 ) 5332 )

The additive group R? acts on XY by translations {6;};cpe: if C = {z;,7 € I} € XY we let

0t-C:: {.I'i—t,iEI}.

We extend this action (while keeping the same notation) to the setting of signed configurations
by acting on both components C* and C~ of a given C € X (R?).

For any integer N we identify a configuration C with N points with an unordered N-tuples
of points in R?, which we still denote by C. Denoting by my the projection from (R?)V to
unordered N-tuples in R?, for a set A of configurations with N points we write Leb®" (A) =

Leb®V (r!(A)).

b. Random tagged signed point configurations

The space P(A x X) can be viewed as the space of laws of tagged signed point configurations,
where we keep as a tag the point z € A around which the signed configuration was blown up. It
is equipped with the topology of weak convergence of measures on A x X'. Throughout we will
always consider the subset

{P €P(AxX),P(Ax X) = Leb(A),¥A Borel} ,

and continue, with some abuse of notation, to denote it by P(A x &). This assumption allows
us to consider the disintegration probability measures P* € P(X) for any = € A, which satisfy

by definition
/ F(z,C)dP(x,C) = /A ( / F(a:,C)dP%C)) dz,

for any function F' € CP(A x X). We refer to [AGS08, Section 5.3] for a proof of the existence
of disintegration measures.

c. Intensity

To any P € P(X) we may associate two probability measures P, P~ on X° as the push-
forwards of P by the two canonical projections of X on X°, namely (C*,C~) — C* and
(ct,C7)—C .

Let P € P(XY). If there exists a measurable function p; p such that for any function
¢ € CP(R?) we have

Ep

> ()

zeC

= / p1,p(x)p(z)de, (6.2.1)
R2

then we say that p; p is the one-point correlation function (or intensity) of P. For m > 0 we
say that P is of intensity m when the function p; p of exists and satisfies p; p = m.

When P € P(A x X9) we let pp be the intensity measure of P defined by pp(z) = P1 pe-
If PcP(AxX) we let p;g, pp be the respective intensity measure of PT, P~. We denote by
Pinv,1 (A x X) the set of all P € Pipy(A x X') such that

Jr .
pz/pzl-
= L
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6.2.2 Rewriting the interaction energy

Here we adapt computations from [RS15,[PS15] to rewrite the interaction energy in terms
of the electric potential generated by the points, seen as charges (this is also the analogue of
the “electrostatic inequality” of [GP77]). Comparing with |[RS15,PS15], instead of using a fixed
(small) truncation distance we use the nearest neighbor distance.

a. Truncation of the logarithmic interaction

Following [PS15] we define (5](977) to be the normalized surface measure on 0D(p,n) (it coincides
with the Dirac mass at p if n = 0). We will also need the notion of truncated logarithmic kernel
defined for 1 > 7 > 0 and = € R? by

fo(@) = (= log x| —log(n)). , (6.2.2)

and by f, = 0 if n = 0. We note that the function f, vanishes outside the disk D(0,7) and
satisfies that

1.
%dlv (Vfy) 400 = 5(()77).

b. Nearest-neighbor distance

If X N Yy are two N -tuples of points, we define the nearest-neighbor (half-)distance as

. 1 . 1 .
r(x;) = min 1,5%1;?|xi—xj],§mjm\azi—yj| ,
for any ¢ = 1,..., N, and similarly for r(y;).

c. Rewriting of the energy functional

Let X N Yy be two N -tuples of points in A. We let Vi, be the electric potential generated
by C, after “smearing out" the charges on a distance r. More precisely,

N N
Vi i=2m(=A)? (Z 53(62(%)) — Zéé:(%))) 7
i=1 i=1

where 27(—A)~! is the convolution by log. By the properties of 51(;77) , this is the same as setting

N N
V(@) = (=logla — il = fuwy (@ —2:)) + 3 (log o = gl + frgy (e =) . (6.2.3)
i=1 i=1
We also write
N
Vo = Z (—log |x — ;| + log |z — i) .
i=1

The next crucial identity expresses the fact that the interaction energy wy ()Z N ?N) can be
computed using the electric potential Vi, (more precisely its gradient, the truncated electric
field) even if the interaction has been truncated at distance 7.

Lemma 6.2.3. Let )?N,?N be such that the associated global point configuration C is simple.
Then,

o 1 N N
wy(Xn,YN) = 5 /]RQ IVVN |2 + Zlog r(z;) + Zlogr(yi). (6.2.4)
i=1 i=1
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Proof. This can be seen as a simple application of Newton’s theorem. Since the system is
globally neutral (there are N positive charges and N negative charges), the electric potential
Vi decays like 1/|x| as |z| — oo, and VVy,. decays like 1/|z|2. We may thus integrate by parts
and find that the boundary terms tend to zero, and therefore, using , we obtain

1 ) 1 o | |
— 2= [ LAV, VN, = (st _ 5lrw)
27 /Rz Vil /Rz 27 ViV, ;/Rz w, ( i vi )
N
= 3 (“logle — &yl = frgay (@ — ) +loglw = sl + oy (@ — ) (85 = 55D,
i,j=1

Next, we use the fact that the disks D(x;,7(x;)) and D(y;, r(y;)) are disjoint by the definition

of r, and that for any p,n, the measure 51(;77) is supported on dD(p,n) where f,(x — p) vanishes,
to obtain

=2 (~logla — |80 —log|a — y;{5f; )
i#£]

N
+ Z (log |lx — x]|5(v" D) log |z — yj|5£f; ) Z log r(x;) + logr(yi)) -
i=1

7]

In addition, by Newton’s theorem (or by the mean-value property), the average of log |z — p|
over any disk D(gq,n) not containing p is log |x — ¢|. Since (51(977) is precisely the uniform measure
of mass 1 on dD(p,n), and using again the fact that the disks D(z;,r(x;)) and D(y;, r(y;)) are
disjoint, we conclude that

= (—loglz; — x;j| — log|y; — y;!)
i#j

N
+ Y (log yi — ;| + log |wi — y;]) — > (log r(x;) + log 7 (yi)) ,
ij i=1

which is the desired result. O

6.2.3 Blow-up coordinates

In view of Lemma, and since the finite point configurations X N, }7N are simple ]P”]Bv—a.s.,
we may rewrite the Gibbs measure as the probability measure whose density with respect to the
Lebesgue measure on A%V is given by

R (— (277/ IV V|2 +Zlogr xl)+logr(yl)>>. (6.2.5)

ZNﬁ =1

We rescale the finite configurations by a factor v/N and use a prime symbol for the new quan-
tities. In particular we let X% = (2, ..., )y) with 2/ = v/Nz; (and the same for Y%,), and we
have of course r(x}) = vV Nr(z;). We let V. be the electric potential generated by the rescaled
point configuration after truncation

o (7).
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and

Vi = Vo ( (6.2.6)

)

We have, by a change of variables

LoV = [ 19viP,
R2 R2

whereas the nearest-neigbor distance term scales as

Zlogr x;) + logr(yi) Zlogr (x;) +log ' (y;) + N log N.
=1 i=1

Combining these identities with (6.1.3) and (6.2.5) we may write the Gibbs measure as the
probability measure whose density with respect to the Lebesgue measure on A2V is given by

1 /
exp (—g <27T /RQ [VVR [P+ Zlogv" +log7"(yz)>) 7 (6.2.7)

where the new normalizing constant K g satisfies log Ky 3 = CgN +0o(NN), with Cg as in (6.1.3]).

The computations in the last two subsections serve as a motivation for the upcoming defi-
nition of the interaction energy for the infinite configurations which arise after taking the limit
N — oco. We note in particular that Vi, solves

N N
—AVy, =27 <Z 55(0:(%)) _ Z%:(w))) 7

i=1 i=1

1
Knp

a relation which will pass to the limit (in the sense of distributions) as N — oo. The electric
field associated to the potential Viv, is VVi, and its divergence is AV ..

6.2.4 Interaction energy for signed configurations
a. Electric fields and electric processes

We may thus define the class Elec of “electric” vector fields on R? to be the set of vector
fields E which belong to L} (R?,R?) for some p < 2 and satisfy

loc
—div E=2r(CT"—C7) inR? (6.2.8)

for some signed point configuration C = (C*,C~). When E satisfies (6 we write E € Elec(C)
and say that F is compatible with C. We note that two elements of EIec(C ) differ by a divergence-
free vector field. Unless stated otherwise, we endow the space Lfoc(RQ,R2) with the weak
topology. If E € Elec we let Conf(F) be the underlying signed point configuration i.e. the
signed point configuration C = (C*,C~) where (C*,C™) is the Jordan decomposition of 1d1v E.
In particular, if C is a signed point configuration with C = Pr(C) (the latter is 1mphed if C is
simple), and such that E € Elec(C), then C = Conf(E).

We define an electric field law as an element of P(L! (R? R?)) where p < 2, concentrated
on Elec. Tt will usually be denoted by P¢. We say that P is stationary when it is invariant
under the (push-forward by) translations 6, - E = E(- — x) for any # € R% A tagged electric
field law is an element of P(A x LP (R? R?)) whose first marginal is the normalized Lebesgue
measure on A and whose disintegration slices are electric field laws. It will be denoted by Pelee,
We say that P is stationary if for a.e. z € A, the disintegration measure P°°%? is stationary.
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b. Nearest-neighbor distance and truncation

If C = (C*,C7) is a signed point configuration we define the nearest-neighbor (half-)distance
as
. 1 . p L
r(x) =min(1,- min |z —2'|,= min |z —y|],
2 g'eCt @' £z 2 yec—

for any x € C* and we define similarly r(y) for y € C™.
For any electric field E we define its truncation

E.:=F— Z vfr(p)(x _p) + Z vfr(p)(x _p)> (629)

peC+t peC—

where C = Conf(F) and r is defined above, computed with respect to Conf(E). This is the
“infinite configuration" equivalent of the truncated electric field VVy, as in (6.2.4). We may
now define the interaction energy of an admissible electric field in a similar fashion as what
arises in Lemma [6.2.3]

A control on the L2-norm of E, can be translated into a bound of the LP-norm on E as
follows.

Lemma 6.2.4. Let C be a point configuration, let E € Elec(C) and let R > 0. We have
12l Lrcr) < LillErllL2(cp) + L2ICl(CR11) (6.2.10)

for some L1 > 0 depending only on R and p and some universal constant L.

Proof. From the definition (6.2.9)) we get

E| < |E |+ Y [Vig@—a)|+ Y Vg —a)l,

qeC+ qeC—

and follows by using the triangle inequality for the LP-norm, Hélder’s inequality which
yields [|Er|lrr(cgr) < LillErllz2(cy) for some Ly depending on R and p, and by observing that
the terms ||V f, (4[| Lr are uniformly bounded by some Ly > 0 and that the number of such terms
is bounded by the total number of points of C in Cr41. O

c. Positive part of the energy

For any E € Elec we define W°(E) as

W°(E) ::hgfip};z/c 1B,
R
and we call it the “positive part" of the energy of E. Recall that the truncation E, of F
at nearest-neighbor distance is defined with respect to the “minimal" underlying signed point
configuration Conf(E).
Next, if C is a signed point configuration we let W°(C) be the infimum of W°(E) over the
electric fields £ compatible with C

W(C) := inf {W°(E), E € Elec(C)} .

We emphasize that the definition of W(C) proceeds by considering the energy of associated
electric fields, and that the truncation of an electric field is defined with respect to the “minimal"
underlying signed point configuration Conf(FE). In particular if Pr(C;) = Pr(Cz) then W°(C;) =
We(Cq) = W°(Pr(Cy1)), where Pr is the pruning map of Definition
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d. Negative part of the energy

If ¥ : R? —» R is a nonnegative measurable function with compact support and C a signed
point configuration we let

W (x,C) = / x(z) log(r(x)) (dC* + dC~)(x)

* . L
W*(C) := limsup ﬁW (1cg,C).

R—o0

Similarly, for any 0 < 7 < 1, we let

W2 (x,C) :== —/Xlog(r(a:) V T)(dCT +dC™)(x)

1
W2(C) := limsup —

ms RzWi(lcR,C).

The function W* is a non-negative quantity, corresponding to the expected “dipole contribution'
to the energy. We will call —W* the negative part of the energy. It can be obtained as the
monotone limit of WZ(C).

We could now try to define the interaction energy of a signed point configuration as the
difference W°(C) — W*(C). However it turns out that for good definition it is preferable to
consider such an object at the level of signed point processes, as we do below.

e. A compatibility lemma
Lemma 6.2.5. Let {En}n be a sequence of electric fields, let E € Elec and let C € X. Assume
that
1. {EMN)} N converges to E weakly in LT, (R? R?).
2. {Conf(EM))}n converges to C in X.
Then Conf(E) = Pr(C), and in particular E is an electric field. Moreover,

1iminf/X|E§N)|2 > /XyETP (6.2.11)
N—oo

for any smooth, compactly supported, nonnegative function x.

Proof. Let Bg be the ball of radius R, and let f € C)(W~1P(Bg)). One may check that
(C§(Bg))* embeds continuously into W~P(Bg) (indeed, W ~1?(Bg) is the dual of the Sobolev
space WO1 “I(BRr) where q is the conjugate exponent to p, and the latter embeds continuously into
C§(Bg) since q > 2). It thus follows that f is also bounded and continuous on (C§(Bg))*. The
convergence of Conf(EN)) to C and the fact that C is locally finite thus imply that

Jim_f (—217Tdiv E<N>> = f(Ct—=C7), VfeCH W LP(Bg)).

Since the function F — —%div FE is continuous from LP

I loc
the first assumption to get

1 1
A}gnoof ( 27rd1V E ) f ( 27lev E) .
Since this is true for all f € CY(W~1P(Bg)) and for all R > 1, we conclude that —s-div E =
Ct —C~ and thus Conf(F) = Pr(C).

(Br) to W~YP(Bg), we may use
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We next prove (6.2.11)). We may assume that the left-hand side is finite, otherwise there is
(N)

nothing to prove. This implies that, up to an extraction of a subsequence, \/xE; ' converges
weakly in L?(R?, R?) to some vector field, which we claim can only be VXE,» where 1" denotes
the nearest-neighbour distance computed in C (and not in Conf(E)). Indeed, it suffices to check

that \/)?EﬁN) converges to /xE, weakly in LP. In view of the first assumption and of ({6.2.9)),
it suffices to check that

o Vhp@-p - > VigEe—-a0—= > VigpE-—p— > Viga—q

peCV)+ qeCN).— peCt qec—

weakly in LIOC(R2), where CV) = (CM)+,cV):=) = Conf(EW)). But from (6.2.2), we have
Vfy(x—p) = |x p|2 13—p|<n (and 0 if n = 0), which is continuous in L? with respect to both
p and 1. So, the stated convergence follows from the second assumption and the definition of

7/, using also the fact that the point configurations are locally finite. We conclude that |/} E7(nN)
converges weakly in L?(R?) as claimed, so by the lower semi-continuity of the L? norm,

liminf/x\EﬁN)\z >/X|E,,/|2.
N—o00

We may finally observe that since r’ < r (the nearest neighbor distances are smaller in C than
in Pr(C)) we have |E,/|> > |E,|? pointwise, which concludes the proof. O

At the level of laws of electric fields, the result of Lemma [6.2.5] translates into

Lemma 6.2.6. Let {Px}n be a sequence of random signed point processes and {P3}n be a
sequence of laws of electric fields. Let P be a random signed point process and P be a law of
electric fields. Let us assume that:

1. For any N > 1, the push-forward of P§¢ by Conf coincides with Py .

2. The sequence {Py}n converges to P as N — oo in P(X).

3. The sequence {P$*}n converges to P9 as N — oo in P(L} (R? R?)).
Then we have

1. The push-forward of P by E s —%div FE is concentrated on signed measures of the
type Ct —C~ for some (C*,C7) in X. In particular P*'° is concentrated on Elec.

2. The push-forward of P¢'¢ by Conf coincides with the push-forward of P by Pr.

Moreover for any smooth, compactly supported, nonnegative function x we have

[ B

hm lnf EPelec |:/ X’ET’|2:| Z EPelec

N—oo

6.2.5 Process level energy
a. Energy of signed point processes

Let P (resp. P) be the law of a signed point process (resp. of a tagged signed point process).
We define

We(P) = Ep [W°(C)], W°(P) = Ep
W*(P) = Bp [W*(C)], W'(P)=E
Wi(P) = Ep[Wi(C)], Wi(P)==Ep

[We(C)] (positive part of the energy)
[W*(C)] (contribution of dipoles)
[W2(C)] (dipoles at truncated distance > 7).
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Finally we define the interaction energy of P (resp. P)

*

W(P) := W°(P) — W*(P) and W(P):=W°(P) - W"(P). (6.2.12)

It is yet unclear whether the right-hand sides in have an actual meaning, because it
could be the difference of two infinite quantities. However we will see in Section that for
a certain class of point processes, which are the only candidates for describing the microscopic
behavior, the quantity W*(P) is in fact finite.

b. Stationary lifting with minimal energy

The following useful lemma shows that we may associate to any stationary tagged point
process the law of a stationary tagged electric field which is compatible with it and whose
energy is minimal.

Lemma 6.2.7. Assume P € Puy(A x X) is such that WO(P) is finite, and such that signed
point configuration are P-a.s. simple. Then there exists a law P of tagged electric fields such
that

1. The push-forward of P*'*° by (z, E) ~ (z, Conf(E)) is P.
2. We have B
W?(P) = Epaec W] (6.2.13)

Proof. The proof of Lemma is very similar to that of [LS15, Lemma 2.12] and we only
sketch it here. For simplicity we present the argument in the non-tagged case, the extension to
random tagged signed point processes being straightforward. Let € > 0 be fixed. For any simple
signed point configuration C such that W°(C) is finite, by definition of W°(C) we may find an
electric field E(©) such that W°(E©)) < W°(C) 4 e. For any k > 1 we let

1
Pecleck / 69 -E(C’E> de',
CoR NG Je,

which is an electric field law (as defined in Section[6.2.4). For any m > 1 we have (using Fubini’s

theorem)
1
/ |E, \deeclegck (E) < C’/ |E7§Cs 2
Com Cl Je,, i

and the right-hand side is bounded as k — oo by the finiteness of W°(E(©#)). Using Lemma
and a standard compactness result in LP-spaces, it follows that the sequence {P%eC k) i is tight

£
in P(LY (R? R?)) (for the weak LI

loc

1
P, =— dp,.c d

Since the signed point configurations are simple P-a.s. we see that P(c ) is the push-forward

topology). We let P(eéea“) be a limit point as k — oco. Set

of P(ecl,egk) by Conf for P-a.e. C. Moreover the ergodic theorem implies that for P-a.e. C,
the sequence {P(Qk)}k converges to a stationary signed point process Fz. By Lemma m we
conclude that the push-forward of P(ecleg) by Conf coincides with the push-forward of Py by Pr
and that the energy is lower semi-continuous in the following sense

1 2 1 2
elec < elec
EPl LC e |Ey| 1 hgnmePCl o [|C e |Er| ]

ghminf/ |EC9)2 < We(EC2), (6.2.14)
‘C ’ m+k

k—o0
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Define next Pele¢ ;= [ Pféeg)dP(C), or by duality

/fdpselec ::/(/fdpelec> P(C),

for any test function f € CO(LY (R? /R?)). It is not difficult to check that the electric field law
Pl is stationary and that its push-forward by Conf is P (because C = Pr(C), P-a.s.). Moreover
we get from ([6.2.14]), for any m > 1,

1
E elec | T E 2
P l|Cm| . | 7“‘

Letting € — 0, we may thus find a limit point P®°¢ of { P} that is still compatible with P and
such that E peiec [W°] < WO(P). The converse inequality is always true by definition of W°. [

Ep W(BC))| < W(P) +

We also obtain the following useful lower semi-continuity property.
Lemma 6.2.8. The map P — W°(P) is lower semi-continuous on Py (A x X).

Proof. Let {Pk}k be a sequence in Pi,y (A x X) converging to some stationary P, and such that
lim infj_y oo W° (Py) is finite. Up to the extraction of a subsequence, we may assume that the
liminf is a limit. For any & > 1 we may apply Lemma [6.2.7] and obtain a stationary electric

field law P,flec such that (6.2.13)) holds. Using the stationarity of P,flec and Fubini’s theorem we
may write, for any k

EP}SIQC [WO(E)] - Eplglec [L |ET|2] 3
1

and in fact the left-hand side is equal to E pelec {% fcR |Ey \2} for any R > 0. The sequence of

the push-forwards of P by E + E, is thus tight in P(L2 (R?,R?)), and using Lemma
we see that {Pglec}y, 1tself is tight in P(L{ .(R? R?)). Using Lemma we see that any limit
point P°¢ is compatible with P and that
2 Eﬁelec [/ |Er‘2‘| 3
C1

l‘ i f E pelec E 2
im inf K pol [ /C 1 |Er|
and using again the stationarity we see that the right-hand side satisfies

E peicc U \ET\Q] = Epacc[WO(E)] 2 W'(P),
C1
which concludes the proof. O

6.2.6 Specific relative entropy and large deviations

Let IT' denote the law of the Poisson point process of intensity 1 on R?, and let IT® :=
I ® IT'.
a. Existence and main properties

The following proposition is an adaptation of classical results concerning the existence and
properties of the so-called specific relative entropy for stationary point processes.
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Proposition 6.2.9. Let P € Pin(X). The following limit exists in [0, +o0]
.1 s
ent[P] := Rh—Igo ﬁEnt (Pr|II%),

moreover the functional P — ent[P] is affine and lower semi-continuous on Piny(X).

Proof. The proofs of the corresponding results in the non-signed setting extend readily to our
context, see e.g. [RAS09, Section 7.2]. O

b. Large deviations for signed empirical fields

Let 1_2?\, be the “reference” empirical field defined as the push-forward by 75 of the Lebesgue
measure Leb” @ Leb? on AN x AN where we recall that iy was defined in (6.1.4)).

Proposition 6.2.10. For any A C Piny(A X X'), we have (with ent defined in (6.1.7)))

o 1 -
—  inf  ent|P| < liminf — log Q7 (A
PEANPiny 1 Pl N—oo N sy(4)

1 - -
< limsup — log Q%(A) < — inf ent[P].
Nooo N PeA

The proof of Proposition [6.2.10| is almost identical to that of |[LS15, Proposition 1.6], see
ILS15, Section 7.

6.2.7 Tightness and discrepancy estimates

a. Compactness and exponential tightness

Lemma 6.2.11. The sequence {E@}N is exponentially tight.

Proof. Let Ng : (Ax X%) — R, be the map Ng(z,C) := CT(D(0,R))+C~(D(0, R)) which gives
the total number of points in the disk D(0, R) of a signed point configuration C = (C*,C™).
(Although it may seem not to depend on z, in applications we will always use Ng(z,C,) where

Cy is the blow-up around z of a signed point configuration.) By construction it is clear that ﬁﬁ;
is concentrated on

{pN € P(A x X),EPN[NR] < 27TR2}.
This set is easily seen to be compact in P(A x X), see e.g. [LS15, Lemma 4.1]. O

b. Discrepancy estimate, equality of intensities

Here we prove that we may control the difference between the number of positive and negative
charges in terms of the two-component interaction energy of the signed point configuration. In
particular, we show that if P is stationary, the finiteness of 7B(P) implies that the intensities
of positive and negative charges coincide.

Lemma 6.2.12. Let P € Py (X) be such that W’(P) and ent[P] are finite. Then we have
Pb = Pp-
Proof. In this proof C denotes a constant depending only on P. Let C be a signed point

configuration and let D be the discrepancy in the square Cg, i.e. the difference between the
number of positive and negative charges in Cp

Dgr = / (dC+ —dCc™).
Cr
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Assume that E is an electric field compatible with C. Using the relation and ( and
integrating by parts over Cr, we have

ET‘ﬁZQﬂ'(DR—i-dR),
0Ck

with 77 the outer unit normal, where the error term dg is bounded by the number of points of C
in a 1-neighborhood of dCg. Let ¢ : R — R be a map such that ¢ (z) = zloglogz for x large
and such that ¢ is convex, nonnegative, nondecreasing. We have

w(\DR!)=w<217T< - Eﬁ) —dR\> scw<

Using Jensen’s inequality and the stationarity of P we get

Ep lw (/80 \EA)

By stationarity of P, Ep [|E,|?] is equal to the positive part energy of P, which is finite by
assumption. We may thus bound

E, .

i ) + CY(|dg|) + C

ACR

<Ep[Y (4R |E[)].

Ep[¢ (4R |E,|)] < CRloglog R+ CR+ C. (6.2.15)
On the other hand, again by stationarity of P and using the convexity of ¥ we have
p (¥ (|dr|)) < CREp (diloglog(Rd;)) < CRloglog REp[di] + CREp[d; loglog di].

The exponential moments of d; and d; loglog d; under a Poisson point process are finite, and P
has finite entropy, hence both expectations under P are finite. We obtain

» (0(|dr])) < CRloglog R+ CR+C, (6.2.16)

where C' depends on the entropy of P. Combining and we get Ep [¢(|Dr|)] =
o(¢(R?)) as R — oo. It implies by Jensen’s inequality (and the fact that ¢(z) = xloglog z for =
large) that Ep[|Dg|] = o(R?), but since P is stationary we have Ep[|Dg|] = R?Ep|[|D1]], hence
we deduce that for all R > 0 we have Ep[|Dg|] = 0. In particular the mean density of positive
and negative charges are equal. O

6.2.8 Scaling relations and optimal intensity

Let P be a stationary signed point process such that the intensity of P* and P~ are both
equal to p. Let o,(P) be the stationary point processes obtained as the push-forward of P by
C — /pC. It is easy to see that both component of o, (P) now have intensity 1.

Lemma 6.2.13. We have the following scaling relations
We(P) = p(W°(0,(P)))

(
W*(P) = p(W*(0,(P)) — log p)
ent[P] = pent[o,(P)] +1—p+plogp

p
p

Proof. The first two relations are deduced by a change of variable in the definitions, see also the
scaling relations in [SS15b, Equation (2.4)]. The scaling relation for the entropy is proven in a
elementary way as in [LS15, Lemma 4.2]. O
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Lemma 6.2.14. Let P € Pinv1(A X X) be a stationary tagged signed point process such that
the intensity measures ppy and pp- are equal to the same function p on A with fA p=1. Then

Fp(P) > inf Fg,
Pinv,l

with equality only if p(x) = 1 for Lebesgque-a.e. x € A.
Proof. From Lemma [6.2.13| we deduce a scaling relation for Fg:

Fa(p) =" /A D)W (0,0 (B7))dz + /A plajentloy oy (P))ds + [

[(1 - é)plog,o—,o—i— 1| dz.
2 N 2

In particular we have

Fs(P) > inf ]:g+(1—§)/plogp.
A

inv,1

The total intensity being fixed, since g < 1 the expression above is minimized only if p = 1

Lebesgue-a.e. and we get

?5(P) > inf ?/3.

inv,1

6.3 Study of the Gibbs measure and main conclusions

6.3.1 Bounds on the partition function

We rely on the work of Gunson-Panta [GP77] which gives a “classical" (in contrast to the
Quantum Field Theory techniques of [Fr676]) approach to the study of the Gibbs measure IP’?V
and of the partition function Zy g. For the reader’s reference, a rewriting of their results can
be found in Section [6.4] below.

In this subsection we mostly re-phrase the key points of their analysis in our notation.

a. Dipole contribution

The analysis in |[GP77], recalled in Section see (6.4.1) and (6.4.8)), yields the following

lemma.

Lemma 6.3.1. For any integer N and any B < 2 we have
B (v = o oo B
log/ exp (—2 (Z logr(z;) + Zlogr(yﬁ)) dXndYn < §NlogN + CgN, (6.3.1)
AN i=1 i=1

with a constant Cg depending only on [5.

b. Exponential moments

We give another consequence of the analysis in [GP77|. For any pair of integers Ny, N_, and
real R > 0 we denote by By, n_ g the law of the signed point process on Cg obtained from two
independent Bernoulli processes with Ny and N_ points. The following lemma gives a bound
on (the exponential moments of) the dipole contribution in the interaction energy.
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Lemma 6.3.2. For any 8 <2 and any R > 0 we have

log BBy, x [egw*“%@} < %M + N_)log(Ny + N_) + (N4 + N_)Cj
- g(N+ + N_)logR. (6.3.2)

Proof. Scaling the configuration by a factor R~! changes the left-hand side by g(]\hr +N_)logR
and then we are left to prove the inequality for R = 1. With our notation, it reduces to the upper

bound on [GP77, (2.4)] as expressed in [GP77, (2.9)] (cf. and (6.4.1)). Let us emphasize
that although the analysis of |GP77] initially deals with a system such that N = N_ = N, the
bound on [GP77, (2.4)] is not affected by the actual sign of each charge, as it is merely a bound
on some given integral on (R?)?Y. We may thus follow the lines of [GP77, Section 2.2.] with
Ny + N_ instead of 2N and [GP77, (2.9)] yields (6.3.2). O

6.3.2 Study of the rate function

In this subsection we show that ?5 is bounded below and is well-defined as a functional
Fp: Piy(A x X%) — RU {+o0}.

Lemma 6.3.3. For any 8 < 2, any 7,R > 0 and any P € Piny(X) such that ent[P] is finite, it

holds that
—%Ep (W3 (1c,,C)] + Ent[Pg|ITR] > —LgR2 (6.3.3)

where Lg is a constant depending only on (3. Consequently we get as 7 — 0

B

—5Er [W*(1¢y,,C)] + Ent[Pr|TIg] > —LgR? (6.3.4)

and finally in the limit R — +o0,

g

_Ep [zw*(c:)] +entP] > —Lj. (6.3.5)

Proof. By the variational characterization of the relative entropy, we know that

g

—log Enm;, [eéwmcRQ] < Ent[Pg|II}] — Ep [2Wj(1CR,C)} : (6.3.6)

We evaluate the left-hand side of (6.3.6). Combining the definition of a Poisson point process
with Lemma [6.3.2| we get

—+00

]og EH% {egwi(lcﬁ‘j)} = log Z ]__[‘19%(]\7Jr7 N*)EBNJr,N,,R [egwi(lCRJC)}
Ni,N_=0
+oo 2(Ny+N_
< log Z eszzR( N )eg(N++N_)10g(N++N_)+(N++N_)CBf§(N++N_)logR'

| |
N NLIN_I

Using the elementary inequality

(Nt 4+ N_)log(Ny + N_) < (NylogNy + N_logN_+ Ny + N_),
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we may separate the variables N, and N_ (which play a symmetric role) and write, using the
fact that 47 < e NIog N+(CHUN for o certain constant C,

log Enr:, eaWileg € ] < 2log Z R g(zv1ogN+N)+N(CB+C)—§N10gR
< 2log Z = R2(1—7 (§—1)NlogN+(cﬁ+c+1)N < LgRQ

for a certain constant Lg depending only on 3. Inserting this estimate into (6.3.6)) yields (6.3.3),

(6.3.4) follows by sending 7 — 0 and (6.3.5) is obtained by dividing (6.3.4) by R? and then
sending R — +o00o (together with the definition (6.1.6) of ent). O

In particular if ent[P] is ﬁmte then for Lebesgue-a.e. x € A the disintegration measure P*
has finite entropy and satisfies , hence the functional Fg is well-defined.
Conclusion

Lemma 6.3.4. The functional 7-'?; is a good rate function.

Proof. Lemma 3[shows that F g is well-defined as a functional Fg : Piny(Ax X) = RU{+00}.
It also implies that the sub-level sets of F 4 are included in sub-level sets of P+ ent[P], which
are compact.

Thus .TSBC is well-defined and it is lower semi-continuous by definition. Since the sub-level
sets of 75 are pre-compact, those of its lower semi-continuous regularization are compact. It
proves that 7550 is a good rate function. O

6.3.3 Properties of the limit objects

One of the crucial points in order to get Theorem [I7] from Theorem [16]is to show, by entropy
arguments, that the intensities of the underlying point processes coincide with the limits of
the empirical measures, while by the scaling argument of Lemma [6.2.14] the rate function is
minimized only when these intensities equal 1.

In this subsection we use the preliminary bounds on Zy g available for 8 < 2 thanks to the
analysis of Gunson-Panta to derive some a priori properties of the possible limits of uj{, and
Py. In particular we wish to show that the intensity of the limits of Py equals, most of the
time, the density of the limits of u}. This is not obvious since, with the topology that we use
for the convergence of Py, there can be a loss of mass when taking the limit.

To overcome this, we will show below that with overwhelming probability (i.e. up to neglect-
ing events of ]P’]ﬁv—probability less than e=V7 with T arbitrarily large) the limiting objects must
have finite entropy, which will yield a uniform integrability of the densities of points, which in
turn ensures that no loss of mass occurs in the limit.

a. A priori bounds on the entropy

Lemma 6.3.5. For any 3 < 2, the following holds with a constant Cg depending only on (3.
1. For any pt € P(A) we have

1
lim lim sup N log IP’B (MN € B(u™" )) <Cs— C—ﬁEnt[uﬂLebA]. (6.3.7)

=0 Nooo
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2. For any P € Pinv (A x X) we have

1
11_H>EL) IIJI\?—?Bop N log&BN ( (P,E)) <Cg— C—ﬁent[P] (6.3.8)
3. For any R, N let {C;}icr be a partition of A by squares of sidelength in (2\/7 2\/») and

let n; = ,uN(Ci) be the number of positive charges in the square C;. When R > 0 is fized

we have
1

hjrvnjgop — logIP’ﬁ ((;I Z T2 ax (1, (log ;;)2>> > M> < fs(M,R), (6.3.9)

el
with lim fg(M, R) = —oo as M — oo.

Proof. For any 8 < 2, let us fix some p > 1 such that p8 < 2 and let ¢ be the conjugate exponent
of p.

Let € P(A). Let A C P(A) be measurable. For any N we obtain using Holder’s inequality
that

1 = — — —
Py, (AQN N{u} € A}) - e~ 2N XN g% aVy
ZNB Ja2Na{ut el
) 1
o . . 1 N . q
< 1 </ e—png(XN,YN)dXNdYN> g / dXndYN
ZNg \JA2N AN {py €A}

Zp 3 o o\«
— “NwB / dXndYN (6.3.10)
ZN,B A2Nn{pf e}

where p, ¢ are as above. By ([6.1.3) we have
log Zn pg = pgNlogN + CpgN +0(N) and log Zy g = gNlogN + CgN +0o(N) (6.3.11)

where Cg, Cpg depend only on 3. On the other hand we have by Sanov’s theorem

dXndYy = —Ent[u"|Leb,]. (6.3.12)

1
lim lim sup — log /
e=0 Nooo A2Nﬂ{,ux€B(,u+,€)}

Combining (6.3.10)) (with A = B(u™,¢)), (6.3.11) and (6.3.12)) yields (6.3.7)). The proof of -

is similar, using Proposition [6.2.10 instead of Sanov S theorem in the last step, where ( is
replaced by

1 S o o

lim lim sup — log / dXndYyN = —ent[P].

=0 Nooo N A2NAPyeB(P.e)

To see (6.3.9), we take A = A(M, R) in (6.3.10) as the event inside the probability in (6.3.9)).
Using (6.3.11]), the proof of (6.3.9) reduces to proving

lim sup 1 log / dXndYy < fs(M,R). (6.3.13)
Nooo N A2NA

The proof of is simplified if one uses comparison to a Poisson process of intensity NV
on A, denoted IIy. Indeed, extend the event A in a natural way to apply to any collection of
integers {n;}icr, and note that A is monotone increasing with respect to K = >,c;n;. Since
there exists a constant 17 > 0 independent of N so that IIy (K > N) > n, and since conditioned
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on K the points of the Poisson process are independent and uniformly distributed in A, the
proof of (6.3.13)) reduces to proving that

1
limsupﬁlog Iy (A) < f3(M, R). (6.3.14)

N—o0

The advantage of working with ITy is that the random variables n; are now independent Poisson
of parameter in (R?/4,9R?/4). In particular, the random variables n; max(1, (log(n;/R?))'/?)
possess a finite exponential moment. Applying Markov’s exponential inequality then yields

(6.3.14)) and completes the proof of (6.3.9)). O

Of course (6.3.7) and (6.3.9) also hold when replacing u}, by uiy-

b. Uniform integrability of the number of points

The bound ([6.3.9)) implies that under ]P’?V, the random number of points ,u% (B (z, \/%)) is
uniformly (as N — o0) integrable on A with overwhelming probablity. More precisely we have

Lemma 6.3.6. For any T, R > 0 and any € > 0 there exists M' > 0 (depending on T, e and on
B) such that for N large enough we have

R
Bz, —= ) 1 dx < ¢
/A”N ( ) Y ) B
with probability > 1 — exp(—NT') under ]P)*]BV.

Proof. Indeed from ([6.3.9) we control the L'(A) norm of the superlinear map 1 defined as

1
Yr(z) = % max (1, (log ‘;2) 2>
by M with P?V—probabﬂity > 1 —exp(N fg(M)) with limps 00 f3(M) = —00. O

c. Microscopic intensity versus macroscopic density

We emphasize the following abuse of notation: in Lemma [6.3.7] and its proof, the quantities
uj{, and Py are elements of a deterministic sequence.

Lemma 6.3.7. Let {Xy,Yn}n be a sequence of points in AN, let pf := 3N 6 and
let Py = in(Xn,Yn). Assume that up to extraction the sequence {(u%, PN)}n converges to
(u*, P) where u* € P(A) and P € Piy(A x X). Then we have leg < ut in the sense of
nonnegative measures.

Moreover under the assumption that p+ does not charge OA and that for any R > 1, z
s (B(x, T]%D is uniformly integrable on A as N — oo then pE =ut.

Of course the same results hold for the quantities associated to the negative charges as well.

Proof. Let x be a non-negative test function in C°(A) and for any R > 1 let fr be a smooth
function satisfying

1
Onot o fp < 1Cn
|CR| |CR]
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we also define fr n as frn(z) := Nfr(v/Nz) for x € A. Finally we define (fg,C*) as

(fr,C*) = /fRdC+ for any CT € XO(R?).

We compute (with * being the convolution product)
/ X * frdpl = / XfroN * dpfy = / x(y) / frn(y — 2)duy (2)dy

N
z/x(y)ZfR(\/N(xi—y))dyz /x(y) <fR,c+>d15N(y,C), (6.3.15)
=1

where the inequality is due to the possible loss of mass at the boundary. For any M > 0 we
may write

[ {fr.C*)aPu0.0) = [ x0) ({fr.Ct) 2 M) dPu(s.C)

— [ x() ((fr.Ct) A M) dP(y,C)

N—oo

and we have, by definition of fr

[ X ({r.C7) 0 20) aP.C) = 1 [ x(0) (N0 R = D(E*) 7 01) dP(5.0).

By definition of the intensity it holds that

fim tim [ () (V0. = 1)) A M) dPw.C) = [ X))

R—oo M—o0

Moreover, since uj\? converges to u we have

lim [ x* frvdul = /Xd,u,+ +ogr(1).

N—oo

Finally, sending R — oo, M — oo, N — oo we get
/ xdpt > / X¥)P5 )

for any non-negative continuous test function x, which proves p;g <ut.
We next prove the equality under the additional assumption that u™ does not charge OA
and that that z — pjk (B (x, \/%) is uniformly integrable on A as N — oo. First, the difference
‘

between the last two terms in (|6.3. is bounded as follows:

N
/ @) S FR(VN (i — ))dy
=1

< [ x) (7€) Py (€) + Ity (o € A.dlist(z.00) < 22}).

Since u} converges to u which does not charge the boundary, the error term satisfies

. R
x| oope™ ({x € A, dist(z,0A) < 2\/—N ) =o0(1)



240 CHAPITRE 6. ETUDE DU GAZ DE COULOMB A DEUX COMPOSANTES

as N — oo, for any y and R fixed.
Moreover, the uniform integrability assumption implies that C ~— (fr,C") is uniformly
integrable against dPy as N — oo and we may for any § > 0 choose M large enough such that

[ X (s iPu(w.0) < [ x) ((#r.C7) A M) dPr(3.C) +

uniformly in N. Arguing as above we see that

tin tin [ 1) ((7.C*) A 0) dPy(0,0) < [ xw)opw) < [ xwopw)

R—o00 N—oo

Eventually we get pu+ < pg + § and we conclude by letting § — 0. O

d. Total intensity of the limit random point process

From the previous lemmas we deduce that in the LDP we may restrict ourselves to random
point processes with total intensity 1.

Lemma 6.3.8. Let P be the law of a stationary tagged signed point process such that the intensity
of positive charges satisfies fA p;g < 1. Then we have

1
lim lim sup N logm%(B(P,e)) = —00. (6.3.16)

e=0 Nooo

Proof. Assume that (6.3.16)) does not hold and that we have for some T’

ii_r}xg) lijrvnjllop % log ‘BJEV(B(P, g)) > —T.
Using the relative compactness of iy (A?Y) we may find a sequence {X N} of points in A2V
such that ¢ N()? ~) converges to some Q € B(P,e). Up to extraction we may also assume that
i converges to u™ € P(A) and the point of Lemma ensures that we may assume
that p™ has finite entropy, hence does not charge the boundary OA. Then, using Lemma m
and Lemma @I we obtain that pg = pT and in particular pzr—? has total mass 1. Thus in

any ball B(P,¢) we may find a random tagged point process Q. such that pg has total mass
1. Moreover, again by Lemma [6.3.6] we may assume that the number of poinfcs in any disk is
uniformly integrable under Q. as ¢ — 0. Passing to the limit ¢ — 0, it implies that pIJS has total
mass 1, which yields a contradiction. O

6.3.4 Conclusion

We now show how Theorems [I6] and [I7] follow once we have proven the following lower and
upper bounds:

Proposition 6.3.9. Let P € Pinv,1(A x X). We have

lim lim inf 1 log/ o2 (35 Je2 IVVie 24300 logr(a)+log r(y))) dX ndYy
e—0 N—oo i]_\,l(B(P,E))

Proposition 6.3.10. Let P € Pinv,1(A x X). We have

=0 Nooo

lim lim sup — log / o (=5 (3 Jo2 19V P30 loar (@) Hosr D)) g % dy
N i Bpey)
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a. Proof of Theorem

Since we have exponential tightness, the proof of Theorem reduces to proving a weak
LDP. Thanks to Lemmas[6.2.14] and [6.3.8] the latter is easily deduced by combining Proposition
and Proposition Indeed in view of it only remains to show that log Ky g =
—inf F3+0(N), but combining the upper and lower bounds with the exponential tightness (and
Lemma we have

_ 1 1 _
— inf Fg <liminf —log Ky 3 <limsup —log Ky g < — inf Fp. (6.3.17)
N ’ N—o00 N ’

Pinv,1 N—oo

inv,1

Hence limpy_ % log Kn,3 = —infp, | Fg, which concludes the proof of Theorem

We also get Corollary from (6.3.17) and the fact that log Ky g + gNlogN =log Zn g
as seen in Section [6.2.3

b. Proof of Theorem

From Lemmas |6.2.12| and |6.2.14| we see that minimizers of F 4 are such that the intensity of
both components of P* are equal to 1 (for Lebesgue-a.e. = € A). Thus the limit points of { Py}
have P]ﬂv—a.s. both intensity measures equal to the uniform measure on A, and by Lemma
we see that any limit point of {4}, s}y must be the uniform measure on A, almost surely

under IP’?V.

The rest of the paper is organized as follows: in Section [6.4] we give for the reader’s conve-
nience the proof of the main result of |[GP77], in Section we prove Proposition and in
Section we prove Proposition [6.3.10

6.4 The method of Gunson-Panta

In this section we recall the main steps of the analysis of Gunson-Panta as presented in [GP77]
while keeping our notation when it is in conflict with that of [GP77]. In [GP77| the charges have
absolute value ¢ > 0, and for our concerns ¢ should always be taken equal to 1.

Recall that the partition function is defined as

ZNﬁ = / e_ng(XN’YN)dX:Nd?N.
’ A2N

This is almost exactly what is denoted by @5, in [GP77, (2.2)], up to the fact that the domain
of integration A is a square, in contrast to |GP77] where it is a disk. We have a factor 3/2
but the definition of wy counts each pairwise interaction twice, whereas in [GP77, (2.2)] the
temperature factor is 8 but each pairwise interaction is counted only once.

In [GP77) (2.3)] an “electrostatic inequality" is used to bound below the interaction energy

in terms of the quantity
N

> _(logr(z;) +logr(y:)),

i=1
this is the same computation as in our Lemma It yields the bound

Zng < / e~ 5 20 (og (i) Hogr(v) g ¥\ dTy, (6.4.1)
T J 2N ’

as expressed in |[GP77, (2.4)] (up to notation, and the fact that in the latter, a minus sign is
missing in the exponential).
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Henceforth the signs of the charge will not play any role. For any M-tuple of points Sy =
(S1,...,5nm), let us define the map F : {1,...,M} — {1,..., M} such that

Si—S N min Sl—S
| 201 et }| i

geeey

With this notation we may rewrite (6.4.1) as

8 2N

Inp < / =3 X g 18—k G, . (6.4.2)
A2N

To any M-tuple Sy we associate the (directed) graph @(b—” M) of “nearest-neighbors", whose set of
vertices is {1, ..., M} and such that there is a directed arrow from i to F; for any i € {1,..., M}.
We observe the following

Lemma 6.4.1. For any Sy, the associated graph '?(gM) has between 1 and M /2 connected
components. Fach connected component is composed of a cycle of length 2, together with trees
attached to the two vertices of the cycle.

The graphs satisfying these properties are called “functional digraphs” (or “functional di-
rected graphs”) such that each connected component contains a cycle of order 2. For any even
M >1and 1 < K < M/2 let us denote by Dy i the set of (isomorphism classes of) labeled
functional digraphs with M vertices and K connected components, each possessing a cycle of
order 2. A combinatorial computation (as the one leading to [GP77, (2.8)]) shows that

Lemma 6.4.2. For any M > 1 and 1 < K < M/2 the cardinality of D i is bounded by

L(M + 1)MM—2K
2KT(K + 1)I'(M — 2K +1)°

D i| <

If v € Dy i is an isomorphism class, we denote by 'Ay(gM) = ~ the event “&(gM) is isomorphic
to v”. We may then rewrite (6.4.2) by splitting the domain of integration according to the
isomorphism class of 4(San), this reads

N
Ing <D Y

B 2N
. e
K=1~7€Dy i Y A*N0{3(S2n)=7}

=52 i 103(%|Si—SFi|)d§2N'

Let 1 < K < N and v € Doy g be fixed, we turn to evaluating the quantity

/ ) =5 Lty 0e(31Si=Sm) g5, (6.4.3)
A2NA{A(San) =7}

Let Lq,...,Lg be the K subsets of vertices associated to each connected component of the
isomorphism class v of graphs. For k € {1,..., K} we perform a change of variables on the

variables S; for i € Li. We denote by ¢ := {zz,zz} the two vertices on the cycle. We let for
i € Ly such that i ¢ ¢ .
U = 5(51 — SFz)’
and we let 1 1
Uja 1= 5(512 - SZ-Z), Ujp = ES’ZZ
With respect to the new variables, the integral in (6.4.3]) is bounded by

LS 5y log u;+2log u;a
42]\7 H/ e 2 (ZzeLk\ck og U oguu) H dul dultlz dulz, (644)
k=1 Dk i¢ Ly
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where Dy, is a (suitably enlarged) domain of integration for the new variables. It may be observed
that the new variables satisfy

E |ug|? + |uiZ]2 + | > <cC.
k
iELk\Ck

for a certain universal constant C', thus each integral term in (6.4.4) can be viewed as an integral
over a simplex i.e. a multiple Dirichlet integral. Using classical results about such integrals
following |GP77, Equation (2.9)] we have

Lemma 6.4.3. For any integer M > 1 and K < M/2, v € Dy, we have

K 8 (
—-= . logu-+2logu-a)
H/ e 2 ZZGL’V\C’V ' 'k H du,‘ duzz duib
k
k=1 Dk i¢Ly,

[

(va-9)""" (xa-

r((M-K)-%5+1

K
) . (6.4.5)

< Dirip i =

~— | N

where X andY are two functions independent of M and K and the bound (6.4.5) depends only
on M, K, and not on the isomorphism class inside Dy k.

With that lemma we deduce

N

Znpg < Z \Don, k| Dirian, ik
K=1

oy s (0 9)" (- )"

< 3 ( 4 6.4.6
_Kz::12KI’(K+1)F(2N—2K+1) F((QN—K)—N%—Fl) (6.4.6)

The last step is the evaluation of the right-hand side in (6.4.6). From |[GP77, Equation (2.9)],

N

(2N + 1) exp(2N) BANINK (x(1- B\ "
Zyp < (2N)PN/? Kzzjl (R + DTN - K+ 1) (Y(l — 4)) (M) , (6.4.7)

which gives in turn, using Newton’s formula

ZN,,B < NBN/zCéV7

where Cjg depends only on 3. The value of (g is not important and it is thus enough to prove
(6-4.7) up to a multiplicative constant of order CV. In particular it yields an upper bound on
the partition function

log Zn g < gNlogN + CgN. (6.4.8)

Passing from (6.4.6) to (6.4.7) (up to a multiplicative constant of order CV) is simple after
observing that the summands in (6.4.6) and (6.4.7)) differ by a factor

(2N)2N=2KT(2N — K + 1)
I((2N - K) - N2 + 1)I(2N — 2K +1)

Using Stirling’s estimate for the Gamma function we see that the logarithm of the previous
expression is equal to

(2N — 2K)log N + (2N — K)log N — (2N — K — Ng) log N — (2N — 2K)log N + O(N).
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After simplifying we see that the ratio of the two summands in (6.4.6) and (6.4.7)) is bounded

by Cév N 7 for some constant Cz depending on 3, whose precise value is not important here.

The thermodynamic limit for log Zy g (as expressed in our Proposition is proved
in |[GP77, Sections 3 and 4] using an interesting “conjugation" trick. In this paper we only need
to use an upper bound (as ) and more generally to follow the method of [GP77, Section
2] that we have just recalled. A posteriori our large deviation principle at scale N implies in
particular that Proposition holds.

6.5 Next order large deviations: lower bound

In this section, we use the blow-up coordinates as introduced in Section and we prove
the LDP lower bound announced in Proposition [6.3.9]

In the rest of this section P is a fixed stationary tagged signed point process in Pipy,1(A x X)
such that ent[P] is finite, otherwise there is nothing to prove.

6.5.1 Negative part of the energy

First we observe that the negative part of the energy is semi-continuous in the suitable
direction.

Lemma 6.5.1. For any sequence {()Z'N,?N)}N such that iN(X'N,?N) € B(P,¢), we have

1Y -
liminf—ﬁ Z (log r(a}) + logr(y})) > W (P) —0-(1) ase — 0.

N
— 00 =1

Proof. We fix a family {xr}r¢(,1) of non-negative bounded by 1 smooth functions such that
X+ =1 on C1_,, xr = 0 outside Cy, and such that for any € R?, x,(z) is nonincreasing with
respect to 7. We also set I := an and we have I, — 1 as 7 — 0.

For any M > 0 we have

1 1Y
——Z logr(z;) + logr(yi)) > — Z log(r(z;) V 1) + log(r(y;) V 7))

N z:l
> /(w*(I XT,C)/\M) iPy.

The map C — Wi(%xT,C) A M is continuous for the topology we use, hence

N

—lim inf % > (logr(x;) + log r(yf)) > / (W*( ! X+, C) A M) dP — o.(1).

N—
V=1
The monotone convergence theorem implies

1 _ 1 _
Jim (W:(XT,C) A M> AP = /Wj(XT,C)dP.
M—o0 I, I,

Let us observe that W (-, -) is linear in the first variable, in particular Wi(%xﬂ C) = %W* (xr,C).
The family of functions {W(x, -)}76(071) is monotone in 7, and the monotone convergence the-
orem implies

lim W*(Xr, )dP:/W*(lol,C)dP.

T—0

By stationarity of P we have [ W*(1¢,,C)dP = W' (P). Chosing then 7 small enough, M large
enough and ¢ small enough depending on 7, M yields the result. O
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To prove the LDP lower bound, it thus suffices to prove a lower bound for

/ efgﬁ Jr2 |VV1l\r,r\2d)ZNd}7N
A2NN{in (XN, YN)EB(P5e)}

(for notation see Section . This then becomes similar to the question treated in [LS15]
and we follow the same strategy: we need to show that there is a large enough volume of
configurations (in fact one which is logarithmically very close to the relative entropy of P*) on
which the energy [po |VV](,7T]2 is not too large. For that we will split the box A into squares of
microscopic size, and we will draw signed configurations independently at random in a Poissonian
way in these squares, so that the total number of points in each square is the expected one.
Sanov’s theorem will guarantee that this generates a set of configurations with the right volume.
Then we need to estimate the energy fR2 \VV](,7T|2 generated by each such configuration. We in
fact need to make these energies restricted to each square depend only on the configuration in
the square, which is a priori not the case. For that we use the idea of “screening" the electric
field Ex generated in each square K, by modifying the configuration in a small neighborhood
of the boundary of the square, to make the electric field energies independent and summable.
This is accomplished by enforcing the boundary condition Eg -7 = 0 on each boundary, which
ensures that when pasting together these electric fields, the relation

—div E =27C in R? (6.5.1)

holds globally. Indeed, a vector field which is discontinuous across an interface has a distribu-
tional divergence concentrated on the interface and equal to the jump of the normal derivative.
With the choice , there is no extra divergence created across the interfaces between the
squares. Even if the Ex’s were gradients, the global E is in general no longer a gradient. This
does not matter however, since the energy of the true electric field VV](,W generated by the
configuration C will be shown to be smaller than that of £ by Helmholtz projection. In the case
of positive charges with a neutralizing background, this procedure was introduced in [SS12] and
further refined in [SS15b,RS15,PS15,LS15], to which we refer for more detail. We implement
this program, with the appropriate adaptations needed for controlling dipoles, in the rest of this
section.

6.5.2 The screening lemma

Proposition 6.5.2. Let R > 0 and let C = (C*,C™) be a simple signed configuration in Cg,
and E an electric field satisfying

—div E =27(C* —C™) in Cg.

Let E, be its truncation at nearest-neighbour half-distance as defined in (6.2.9)).
Let nt :=C*T(CRr), n= :=C (CR), and n:=n" +n~, and for any 0 < e < 1 let

+,€ — + —HE L _ - 3 F— +,e —E
Nint = ¢ (CR(lfs))’ Nipt -= C (CR(le)% Ning *= Mg T Ning >

and define

1 / 9
M= — |E|°.
R? Jop

Then for any 0 < € < 1, if R is large enough, there exists a (measurable) family of signed
configurations PR (C, E) such that for any C>" € ®XL(C, E) we have

1. C and C°" coincide in Cp(1_)-
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2. There exists a vector field B3 satisfying

(a) E* is compatible with C5" in Cr and is screened in the sense that

—div E5" = 27C%"  in Cp
BT =0 on 0CRr

(b) The energy of E5" (after truncation) is controlled by that of E

i lo nD
SCR|)

M
/ | B2 < / E.|>+C (R +eR* + —
Cr Cr g eR

3. We have E
nni (C) < n*(C) <t () +C ( 1t g

n
log — 6.5.2
o8 7:) (6.5.2)

o

and the same holds for ny; ,n~.

Moreover the map C + ®X%(C, E) is such that if A is a (measurable) subset of signed point
configurations in X (Cr) such that the quantities n and ng, are constant on A, then we have

log Leb®2A” (U @;‘f}%(c,E)> > log Leb®"(A)
CeA

c MR n n
-C ((n —ni)log R+ R+ — +eR?* + 7 log 5R> . (6.5.3)

Proof. Step 1: choice of a good “annulus”. Consider the disjoint “annuli” Ay = Cr_g(x+1)\Cr—sk
for k ranging from 1 to the integer part of %ER. There are [%ER] such disjoint sets. The
proportion of such k’s such that
20M R?
[ B < T
Ag

eR
. Similarly, the proportion of such k’s such that

Sl

is strictly larger than
20n
eR
. We deduce that there exists a kg € [1, [eR]] such that

IC(Ax) <

(Sl

is strictly larger than

20MR 20n
[ EP<IEE g < 27 (6.5.4)

ko
For brevity, we set A := Ay, and Aiy = {z € A, dist(x,0A4) > 2}.
Set next n = <& and

40n
Ervﬁ: =k, — Z v(fn/\r(p) - fr(p))(m *p) + Z v(fn/\r(p) - fr(p))(x - p)'
PECTNAint PEC™NAint
In other words, we replace 5§,T(p ) by 5§,77M(p ) for all the points p in Ajnt.

Computing as in [PS15, Lemma 2.3] we may write

/A By ? = /A B2 + By — B,

+ 2/A Z v(fﬁ/\"‘(P) - f"‘(?’))(x _p) B+ Z v(fn/\r(p) - fr(p))(zC _p) - By

peCTNAint PEC™NAint
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Integrating by parts, and using that —div E, = 2m(> cco+ 5g(cr(x)) — > wec- 5( (x))), we have

/ Z v(fn/\r f'r(p))(:C _p) -Er + Z v(fn/\?"(p) - f'r(p))(m _p) By

pGC*ﬁA nt pECTNAint

pECTNAint A reCt reC—

=2 ) / (Fanrt) = Fr(o) (Z oyl — 3" 5&’”@”)
+ 27 Z /(fn/\r(p) f’!’(p) r—p (Z 5(T($) Z 53(!‘(38))) (655)

pEC™ NAint xeCt xeC—

and there are no boundary terms since f, and fya, vanish outside of B(p,r(p)) with r(p) < 1.
By the same argument, and since all the balls of radius r(p) are disjoint, all the terms in the
right-hand side of (6.5.5)) vanish. We are thus left with

[iEal = [1BE ¢ 1B -5 = [1B2+ 5 [ U — )P
A A A peCNAint

and using again the same integration by parts argument, we have

L, 19y = )2 = 2108 (p) = log( A () < 2o
It follows with (6.5.4]) that

407n
E. 2< E,.|?
[ 1Bl < [ 1BP+ TR

Step 2: choice of a good boundary. Consider all the 0C; where t is chosen so that

eR
log =1 6.5.6
8 Jon (6.5.6)

0Cy C {x € Aint, dist(x, 0Ain) > 1}.

By the bound r(z) < 1, 0K; cannot intersect any B(p,r(p)) for p ¢ Ain. Moreover, by the
choice of n and (6.5.4), we have n|C|(A) < 5. Thus, the total perimeter of the balls B(p,nAr(p))
with p € C N Ay is bounded by % We deduce that there exists t such that 0C; C Ay and 9C;
intersects none of the B(p,n) for p € CN Ajyy and none of the B(p, r(p)) for p € C\ Aint. Applying
a mean value argument to the integrand in , and using , we may also assume that
t is such that the restriction (or trace) of E,, on 0C; is well defined as an L? function, and
denoting

g = (Epry-1)|ac,

where 7 denotes the inner unit normal, we have

407mn eR 20MR  407n eR
2<10 (/ E,? ’1 D < 10( ’1 D ) 6.5.7
/act 91" = B R e g c "R 1 (6:5.7)

Step 3: construction outside Cy

We take the C; given by the previous step and keep the configuration in C; unchanged, and
discard the configuration in Cr\C}. This way the first item will be verified.

Consider next dC; and partition each of its sides into segments I; of length € [3,3]. This
yields a natural partition of Cy4+1\Cy into disjoint rectangles R;, | = 1,---, L. Each 0R; has
four sides: one is I; (or does not exist if R; is a corner square), one (or two in case of a corner)

belongs to 0Cyy1, one is adjacent to OR;_1, one to Ri1.
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For each [, we let g; denote the restriction of g to I;. We also define ng = 0 and for each
lell, L],

TR T R b

where [-] is the integer part. We observe that

lal <1, zl:nk: lzl:/gkl

and

ng=c¢ —c_1 — /gl. (6.5.8)

In each R; we let A; be a set of |n;| points of sign equal to that of n;, and which are
a perturbation of a fixed regular square lattice A) of sidelength 1/+/[n;]. More formally, to
each z; € A) which is at distance > 1//[ny] from OR;, we associate a point z; satisfying

|zi — zi] < 1/(44/|ny]), and set A; = {xz}liq We let h; be the mean zero solution to

—Ah; = 2msgn(ny) Z Op in Ry

PEA,
Vh -n=gqg on OR; N I;
Vh -1t =—¢_1 on OR; NOR;_1
Vhy - = ¢ on OR; NOR 11
Vh -11=0 on OR; N OCy1.

One may check that this equation is solvable, and has a unique solution with mean zero, in view
of (6.5.8). We may also write h; = u; + v; where

—Au; = 27T|%| in Ry
Vu -1 =g on IR; N I
Vu, - =—c¢_1 ondR; NIR;_1
Vu; -1 = ¢ on OR; N 3Rl+1
VU[ =20 on 8Rl N 8Ct+1.
and "
—Auv; = 2msgn(ny) Z dp — 2 —- in R,
eyt Rl
VUZ-T_i:O on 87?,[.

Both equations have a unique solution with zero average. Since the points in A; are well-
separated from the boundary, using the same notation as in (6.2.9)), we have

—div (Vuy), = 2wsgn(n;) Z 6}(f(p)) - 2%% in Ry
PEN; ¢

(V) -1=0 on IR,
and we may write (Vuy), = 3°,cp, VGp with

_AG, = 2msgn(n) (6]gr(p)) _ ﬁ) in Ry
(VGy) i =0 o
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We have that for each p € Ay,
| 196, < cliog ) + 1.
1

This can be proved by comparing Gy, to f,.(z —p) (defined in (6.2.2))), for example as in [PS15,
proof of (6.23)]. Using that the separation of the points is at least of order 1/4/|n|, we may
then write

/ (V). )? < Clny|log |ny| + Z VG, - VG,

R p#p EN

and by arrangement of the points near a lattice, the second sum is seen to be compara-
ble to — 37, . yep, log|p — p/|. This term is itself known to be asymptotic as [ny] — oo to
—(ny)? lele log |z — y| dp(x) du(y) where p is the limit of \Tll| > pen, Op (here the uniform mea-
sure on R;). We thus conclude that whether |n;| — co or not, we have

/R [(Vor)e]* < C(mg)? (6.5.9)

On the other hand, by elliptic estimates (for example [RS15, Lemma 5.8]), we have

|Vy|*> < C (/ G4+ c?) (6.5.10)
R

with C universal. Since |¢;| < 1 for every [, in view of (6.5.8) we have (n;)?> < 3+ 2 [ g7 and
thus, combining (6.5.9)) and (6.5.10)), we find

" (V). |* < C (1 + /g?) : (6.5.11)

We now define E5" to be E in C; and to be Y-, 1g, Vi in Cy1\Ct, and C5 to be
C*":=(CNCy) U (Uy)

(with sign). We see that the normal components of E5" agree on each interface of 9R;, and

thus
—div B8 = 2xC3* in Ry
E5T - ii=0 on 9C41.

Also, in view of (6.5.11)) we have

foo ez [ )
Ci\Ct-1

We conclude with (6.5.7) that

MR
[eees [ mpse (PR
Cy Cr 15 ER

Next, we extend (if needed) the configuration to Cr\Cy41 by just adding squares with dipoles.
More precisely, we partition Cr\Cy41 into rectangles R of sidelengths in [1, 2]. In each rectangle
we place a positive charge p; and a negative charge p_ separated from each other and from the
boundary of the rectangle by at least 1/4. We then solve for

n

log SRD.

—Au =27(0p, — Ip_) in R
Vu-n=0 on OR.
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We check as above that [, |(Vu),|[* < C for each such rectangle, and pasting together the elec-
tric fields (Vu), thus constructed and the one constructed in Cyy1, we find a vector field and a
family of configurations satisfying all the desired conditions, and we see that this extension has
added an energy at most proportional to the volume of Cg\Cyy1, i.e. CeR2.

Step 4: control on the number of points

By construction, the point configuration has not been changed in Cg(;_), hence the left-
hand inequality in holds. The number of points that have been added is given by Zlel ny.
In view of (6.5.8]) and (6.5.7)) we obtain

L L

M
IUED STl (R
=1 =1 e ¢eR

log eR > 7

n
which yields the right-hand inequality in (6.5.2)).

Step 5: volume estimate
We now turn to the proof of . Since we have discarded the point configuration in
Cr\C%, in which there were at most n — ns,; points, we have lost a logarithmic volume bounded
(in absolute value) by
(n — n§y) log |Cr\ K. (6.5.12)
On the other hand, the points that are constructed in each rectangle R; were allowed to move
independently in a small perturbation of the lattice of sidelength 1/+/]ny], e.g. they may be

chosen arbitrarily in a disk of radius 4\1|ﬁ| up to a multiplicative constant in the estimates.
ny

This allows us to create a volume of configurations of order

<4¢1W>2M

in each rectangle R;. Summing over [, we see that the (absolute value of the) logarithmic volume
contribution of the points that are created is bounded by

L L
ZC!nl\log]nll < CZnZQ <C (L+/g2)
=1 =1

in view of (6.5.8). We have L < R and [ ¢* is bounded as in (6.5.7)), which allows us to bound

the previous expression by

MR

n n
—+ —log— ). 5.1
C<R+ =+ oggR) (6.5.13)

Combining (6.5.12)) and (6.5.13)) yields (6.5.3]). O

6.5.3 Screening the best electric field

For any R > 0, for any C € X(CR), we let Or(C) be the set of electric fields which are
compatible with C in Cg, i.e. such that —div £ = 27C in Cg.
We may then define Fr(C) to be the “best energy” associated to C in Cg, i.e.

Fg(C) := min {1;2/0 B2 E ¢ OR(C)} : (6.5.14)
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Since we may always consider the local electric field associated to C, the set Or(C) is non
empty. If {E®)1, is a sequence in Og(C) such that % fCR |E,|? is bounded, then using Lemma
we see that {E®}, converges weakly (up to a subsequencen extraction) to some E in

L (Cr,R?). Moreover we have E € Og(C) and the sequence {ET(,k)}k converges weakly to F,
in L?. By the weak lower semi-continuity of the L? norm we obtain

/\ET\leiminf/ |E)|2,
Cr k—o00 Cr

This ensures that the minimum in (6.5.14]) exists.
We next let I'g : X(CRr) — A be a measurable choice of an optimal electric field, i.e. be such

that I'r(C) € Or(C) and
1

RZ/C Tr.|* = Fr(C).
R

Let us also make the following observation: if P is a stationary tagged signed point process,
we have, for any R > 0 o
Ep [Fr(C)] < W°(P). (6.5.15)

Indeed from Lemma _We know that we may find a stationary electric field process Pl
which is compatible with P and such that

1 -
E peiee [(RQ /CR yETPﬂ =W°(P),

and the left-hand side is by definition > [ Fr(C)dP.
Lemma 6.5.3. The map Fg is upper semi-continuous on X (CR).

Proof. The proof goes as in |[LS15, Lemma 5.8]. First, if C; is a signed point configuration in
Cr and Cy is close to Cy, then they have the same number of points (for both components). We
may then evaluate the energy of the “Neumann” electric field E associated to C; — Ca (i.e. the
solution to —div E = 27(C; — C2) with zero mean and vanishing Neumann boundary conditions
and see that it can be made arbitrarily small if Cy is close enough to C;. By adding E to a
properly an electric field in Ogr(Cy) of almost minimal energy we may construct an element of
ORr(C2) whose energy is bounded above by Fr(C1) + o(1) as dx(Ca,C1) goes to zero. O

Henceforth for any R > 0 and any ¢ € (0,1), if C is a signed point configuration in Cr we
let @%TS(C) be the set of point configurations obtained by applying Proposition W to C and
I'r(C), in other words we let (with a slight abuse of notation)

7 (C) = PR(C,Tr(C)).

To any configuration in @ Rﬁ(C) is associated a compatible electric field E°" whose energy is
bounded in terms of Fr(C) according to the conclusions of Proposition m

R n n
E2 < F —F 24 —1 ) 5.1
/CRy P < Fa(C)+ € (S Fal0) + <R + Tlog 2 (6.5.16)

6.5.4 Construction of configurations

We now turn to the construction of configurations by cutting the domain into microscopic
squares as announced.

For any N > 1 we let A’ := v/ NA.
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a. Tiling the domain

For any integer N > 1 and any R > 0, we let
R := R(1 + (log R)~'/1%).

If R is such that v/ N/R is an integer, we let for convenience mn,r = N/ R?. We let KnR =
{I_(i}izl,m,m ~.r D€ a collection of closed squares with disjoint interior which tile A’ by translated
copies of C'p. For any ¢ we denote by z; the center of K;, and we let K; be the square of center z;
and sidelength R (and whose sides are parallel to those of K;). Finally for any ¢ € (0,1) we let
K; . be the square of center z; and sidelength R(1 —¢). In particular we have K; . C K; C K;.

b. Generating approximating microstates

In the following lemma we show how to generate configurations with enough phase-space
volume and ressembling any given P.

Lemma 6.5.4. Let ((CY,CI),...,(CJr C,, )) be my g independent random wvariables

MmN R’ ~MN,R
such that (Cf,C;) is distributed as I, in other words C; and C; are the restriction to
K; of a couple of independent Poisson point processes of intensity 1. We condition this my g-

R

2
R) , more

tuple of random variables so that the total number of points of each sign is about N (
precisely

MN,R MN,R R\ 2
> Ci=)> Ci=IN (—) 1 (6.5.17)
=1 =1 R

We define DﬁMR as the law of the following random variable in A x X':

1 MN,R
Sin/os g (G o
mN,R Z:Zl (N 227027; (Cz 7CZ ))

Moreover let C be the signed point process obtained as the union of the signed point processes
(Cf,C;) e

MN,R MN,R
C:= (Z ch > C;)
i=1 i=1
and define ,‘5)\21\773 as the law of the random variable in A x X°

1
N /A O(N-1/22,0,.0) 4%

Then for any P € Ps1(A x X) the following inequality holds

. . . . . 2 o~ > _7 — . .
hRniggf 11/13% lﬂlglof - log My R (B(P, I/)) > —ent[P], (6.5.18)
moreover for any > 0 we have
lim inf lim lim inf o log (Mx.r, M) (B(P,v) x B(P,d)) > —ent[P], (6.5.19)

where (DjTN,R,SS)\TNVR) denotes the joint law of me,R and S/JJ\TN,R with the natural coupling.
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Proof. First let us forget about the condition on the number of points (i.e. we consider indepen-
dent Poisson point processes) and about the tags (i.e. let us replace P by a signed point process
P in Pyy(X)). Then for any fixed R there holds a LDP for f)'ﬁM r at speed my r with rate
function Ent[-|II%]. This is a consequence of the classical Sanov theorem (see [DZ10| Section
6.2]) because the random variables 6., - (C;, C;) are i.i.d. Taking the limit R — oo yields

lim lim lim inf
R—oov—0 N—oo MN R

log My g (B(P,v)) > —ent[P].

We may extend this LDP to the context of tagged (signed) point processes by arguing as in [LS15,
Section 7], where it is also shown that the condition on the number of points does not alter the

LDP. This leads to (6.5.18). The lower bound (6.5.19)) follows from (6.5.18|) by elementary

manipulations as sketched in [LS15, Section 7]. O

c. Further conditioning on the points

Let ¢ = (log R) 3. For any i € {1,...,my g} we let n; be the number of points in K; and
niint be the number of points in K; . (we add a 4+ or — superscript in order to restrict ourselves
to points with a positive or negative charge).

Lemma 6.5.5. The conclusions of Lemma hold after conditioning the random variables
((Cf, Cy),...,(CH C )) to satisfy the following additional conditions:

mN,R’ TMN,R

MN,R

> :7; log:—]; < (eR)7V*N, (6.5.20)
i=1

MN,R

Z (ni — nfint) log R < (log R)~/2N. (6.5.21)

i=1
Proof. Tt is enough to show that both events occur with probability 1 — exp(—NT) with T
tending to oo as R — 0o, when throwing points as a signed Poisson point process of intensity 1
in UZJ\{’R K;. The result then follows from standard large deviations estimates. Indeed, to prove

that we may assume ([6.5.20]) without changing the volume of microstates, we may observe that
the exponential moments of

C— vV €RLTL
eR

1 "‘
oo L
gaR

under the law of a Poisson point process in Cg are bounded by O(R?) as R — oo. In particular,

MN,R MN,R
s n; n; _ s 5 i 1
IOgH ( Z £ IOg E > (€R) 1/4N> = IOgH ( Z €R£ log E > (€R)1/4N>
=1 i=1
< —(6R)1/4N + log Egs exp <mzNjR ngﬁ log i )
N = eR eR

N 1
< —(5R)1/4N + 2 log EchR exp \/eRan

n
log —| < —(eR)YN + O(N).
08 5| < ~(R)VAN + O()

In particular indeed occurs with probability of order 1 — exp(—(¢R)Y/*N).
To prove that we may assume we may argue similarly, by first observing that the
exponential moments of
Cr— (n, — ni,int)(log R)2
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under a standard Poisson point process (of intensity 1) in Cg are bounded by O(R?) as R — oc.
Indeed the quantity n; — n; in¢ is nothing but the number of points in the thin layer Cr\Cg(_.)
which has an area of order R%s = R?(log R)~3. We then deduce that

MN,R
log T ( > (nf —nf)log R > (log R)~ 1/2N> < —C(log R)"/*N,
i=1

which implies that (6.5.21]) indeed occurs with large enough probability. O

d. Screening microstates

Lemma 6.5.6. Let P € Pg1(A x X) and § > 0 be fived. Let N,R,R be as above. For
any v > 0 there exists a set A™°Y of signed point configurations in A of the form C™°4 =
ZZJ}[’R(C;HOd’+,C;HOd’7) where (CmOdjL CmOd ) is a signed point configuration in K;, satisfying

MN,R MN,R
S oerott ) = Z et () = (6.5.22)
=1

and such that the following holds

1. If R is large enough, v small enough and N large enough we have for any C™°9 € Amod

1 30

N 6(1\7 1/2,29 Cmod)dz € B(P 1 )

2. For any C™°% in A™°9 there exists an electric field E™°Y satisfying
(a) E™°4 s compatible with C™°4

div (EmOd) =27C™d  in A
{ Emed .7 =0 on ON -~ (6.5.23)
(b) The energy of E™°Y is bounded by
lim sup / |Emed |2 < W(P) + 6, (6.5.24)
R—00,v—0,N—00 27
uniformly on C™°d € Amod,
3. There is a good volume of such microstates
Leb2N -
lim inf Amed) > _ent[P]. 5.2
Rﬁoolzrznﬁl(?Naoo N ’A'PN ( ) - ent[ ] (6 g 5)
Proof. For any v > 0, let us write the conditions for a signed point configuration C := Z;m{ e
1 _
p /A/ 6(N—1/2Z792_C)dl' € B(P, 5) (6526)
| MR -
O n— € B(P,v). 6.5.27
MR ; (N=1/22:,0.,-C;) (P,v) ( )

By Lemma we know that given § > 0, for any N, R,v (such that N/R € N) there exists

a set A*PS (“abs” as “abstract” because we generate them abstractly - and not by hand - using

Sanov’s theorem as explained in the previous section) of configurations C*P%$ = 377" % CabS ® with
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N points, where C;' b s a point configuration in the square K;, such that for any C2P%s ¢ A2bs

(6.5.26]) and (6.5.27) hold and satisfying

2N
lim inf 1 Leb

_ o abs > = ' 5
R—00,v—0,N—o00 2N 08 ‘AN,R|2N (A ) = /Aent[P ]dw (6 5 28)

To see how Lemma m yields it suffices to note that the law of the 2N-points signed
point process C of Lemma coincides with the law of the point process induced by the
2N-th product of the normalized Lebesgue measure on A’, and with this observation (6.5.19))
gives .

We let A™°d be the set of configurations obtained after applying the screening procedure
described in Section with the parameter € chosen as

€= 6.5.29

log® R ( )

More precisely, for each C?*% in A2 we decompose C?P5* as E;Z{*R ct bs:S where C? bSS s a
signed point configuration in K;, and for any ¢ = 1,...,my g we let @fcr(cabs’s) be the set of

signed point configurations obtained after screening the configuration C;' b5 in K;. Combining

(6.5.2) with (6.5.17) and (6.5.20), (6.5.21) we see that any signed point configuration C™°4
has a total number of points with positive charge between N — o(/N) and N. We may then
complete the point configurations by just adding squares with dipoles in the remaining layers
Ui:l,...,mNyR(Ki\Ki)’ in such a way that is satisfied.

We then let ®™°4(C2P%3) be the set of signed point configurations in A’ obtained as the
cartesian product of the @ (Cabss)

m
(I>mod (Cabs,s) — ﬁR (I)zs‘cr (Cabs,s)
=1

and A™°4 (“mod” as “modified”) is defined as the image of 42" by ®™°¢. Since P and § are
given, the set A™°d depends on the parameters N, R, ¢, v.

Let us now check that A™°? satisfies the conclusions of Lemma [6.5.6]

Distance to P. To prove the first item we claim that the screening procedure preserves the
closeness of the continuous average to P as expressed in (however in general it does not
preserve that of the discrete average (6.5.27))). The proof of such a claim was already given (in
a slightly different setting) in |[LS15, Section 6.3.2].

Since the topology on X is local, when comparing two random signed point processes we can
localize the configurations to a square of fixed size Ry, up to a uniform error which goes to 0 as
Ry — oo. Now, the main point is that the screening procedure only modifies the configurations
in a thin layer of size e R, (where ¢ has been chosen in (6.5.29)) in each square K;. In particular,
when R is large (hence ¢ is small), the vast majority of the translates of a given square Ry by
z € A does not intersect any such thin layer, so that the configurations in them have not been
modified when passing from C*"%% to C™°d, Fixing Ry large enough and sending R — oo we
may thus bound the distance between the continuous average for C**** and the one for C™°4 by
at most /4.

Energy. First we associate to any C™°4 € A™°d 3 screened electric field E™°4. We know by
definition of the map ®°° that for C*™°4 € A™°d for any i =1...m ~,r there exists an electric
field £M°d such that

div (Emed) = 27Cmod  in K;
Emed . = on 0K;
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An electric field E{“Od satisfying the analogous relation on K;\K; can also easily be constructed,
and its energy can be bounded be the number of dipoles added in that layer. Setting Eod . —
S, Bmedy e 4 pmody &:\k, Provides an electric field satisfying (6.5.23). We now turn to bounding

its energy. Let C2P%5 € A2Ps be such that C™° is obtained from C?P* after screening. For any
i = 1,...,mpn R, the energy of EZmOd is bounded as in (6.5.16) in terms of the “best energy”

abs,s

assoc1ated to C;7°. We thus have, by summing the contributions of each square K; and I_(Z-\KZ-

mNR MN R
mod |2 mod mod abss
J et = X [ B [ VB S S e
i\ 1%
mNR MN,R

+C Z F (€255 4 Z i + Ne+o(N) (6.5.30)

’l
eR
where n; is the number of points |C; bSS|(K;).

We now use the fact that the discrete average of the configurations in the square K; is close
to P and that Fg is upper semi-continuous (see Lemma [6.5.3). We thus have

MN,R

ST Fr(c™) < /FR(C)dP < W°(P) (6.5.31)

=1

lim sup
R—oo,v—0 MN,R

where the last inequality follows from (6.5.15)). Combining (6.5.30), (6.5.31) and proves
(6521) .

Volume. We now wish to bound the volume loss between the set A*™S of microstates
generated “abstractly” and the set A™°¢ of configurations obtained after modification by the
screening procedure. From the conclusions Proposition we may estimate the cost (in
logarithmic volume) of screening the signed point configurations. According to the loss
can be controlled by

MN,R R MN,R bs, ) MN,R n:
/C e © ( > (i niw)log R+ R) + = Y (Fr(C™) +eR?) + Z =

=1 i=1

1

geR

We have my rR = o(N), and limp n—c0 %mN,R€R2 = 0 due to the choice ([6.5.29)).
We also have, from (6.5.20))

MN,R

. 1 n; ni | _
A Jim N 2 Cg o8 | =
Since (|6.5.31]) holds we obtain
1 MN,R
lim lim lim 1R F (Cfbs’s) =0.
R—o00 v—0 N—o0 3 i—1
Finally from (6.5.21)) we get that
MN,R
Z (n; — njint) log R = o(N)
i=1

where n; = ]C?bs’s\(CR) and n; int = ]Cfbs’s\(CR(l_a)), which concludes the proof of (6.5.25).
0

Combining Lemmas [6.5.1] and [6.5.6] yields Proposition [6.3.9}
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6.6 Next order large deviations: upper bound

In this section we prove the Large Deviations upper bound stated in Proposition [6.3.10)

6.6.1 Positive part of the energy

First we observe that the positive part of the energy is semi-continuous in the suitable
direction.

Lemma 6.6.1. Let Pe Pinv,1 (A X X). For any sequence {(XN,}?N)}N such that iN(XN,?N) €
B(P,¢), we have

lim inf N/ |VVNT\2 > W’(P) — 0-(1).

N—oo 27

pelec
Proof. Define P(X Ty &

el
(Xe;,?N /5:(:\/’ (VNz+- )d

ie. f_’(e)l?c 1) is the push-forward of the Lebesgue measure on A by x — V](,(\/N xz+-), where V};
NI N

was defined in (6.2.6). Assume that [, |VV](77T\2 < CN (otherwise there is nothing to prove).
For any m > 0 we have

1
/AICI ; |E,| dPeleC g (@, B) < / YV, 2 (6.6.1)

The bound ([6.6.1)) implies that the push-forward of 15(’3)1?6‘3 74) by (z, E) — (z, E;) is tight in P(A x
NYN s

L% .(R?,R?)). Using Lemma [6.2.4 we also get the tightness of Pelfc . in P(A x L (R% R?)).

The associated random tagged signed point process P, ¢ (i.e. the push-forward of P°¢ _

(Xn,YN) loc
(Xn.YN) (Xn,Yn)
by (2, E) = (z,Conf(E)) is also tight in P(A x X), arguing as in Lemma [6.2.11, Up to a
subsequence extraction, we may thus find P§'*° € P(A x L (R? R?)) and Py € P(A x X) such

loc

that
pelec pelec
1. P()?NYN) converges to 5% as N — oo
2. P(X ) converges to Py as N — oo.

It is not hard to check that the first marginal of Py is the Lebesgue measure on A, that its second
marginal is stationary, and that Py € B(P, 2¢).
Using Lemma we obtain from (6.6.1)) that for any m > 0

1
2 elec < s & / 2'
/Ac | / |Er Py lon inf / V¥Vl

In particular, letting m — co and using the definition of W’ we obtain

. 1
W’ (Py) < hmlnf/ IVVA |2
N Jp2 ’

N—oo

We conclude by letting ¢ — 0 and using the lower semi-continuity of W’ among random sta-
tionary tagged processes, as stated in Lemma [6.2.8] O
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6.6.2 Bound on the nearest neighbor contributions

We are now left to bound from above

/ =5 S log @) +log () g ¥ v Ty
AN H(B(Pe))

For 0 < 7 < 1 we will distinguish between the points whose nearest neighbor is at distance > 7
and those with a very close neighbor, at distance < 7. We thus write

Zlogfr’ )+ log r(y}) Zlog )V 1)+ log(r(y) vV T)

+ Z log( (y’)

) +log(MY2 A1), (6.6.2)

a. Points at distance > 7

The contributions due to the interactions of points at distance > 7 is continuous, as expressed
by the following

Lemma 6.6.2. Let Pe Pinv,1 (A x X). For any sequence {XN,}?N}N such that iN(XN,)?N) IS
B(P,¢) and such that N (C,Cy) is uniformly integrable against dPy as N — oo, we have

lim inf — Zlog )V 1)+ log(r(y)) V1) > —Wi(P) + 0-(1).

N—o0

Proof. For any t > 0 let x; be a smooth nonnegative function such that y; = 1 in C1_; and
xt = 0 outside C4; and such that [ x; = 1. Let A; be the square {z € A, d(z,dA\) > t}. For N
large enough we have

—*zlog V) +loglr(y) v 1) = = [ 1a,(0) (W30, C)) P

The map C + —W3(x;,C) is continuous and bounded by (—log(7))N(C,C111), and since
N(C,C144) is uniformly integrable against dPy we have

i~ [ L (o) (W20, ) dPy = — [ L, () (W (60, €)) AP+ 0.(1),

N—oo

Letting t — 0 yields the result. O

b. Contribution of close dipoles

We now turn to bounding the contributions to the Boltzmann factor e #*~ due to pairs of
points which are at distance < 7 from each other, and see that this quantity is negligible when
7 — 0. Using (6.6.2]) we see that we are left with bounding

5N () r(y]
/ e~ 2 2uim1 log 1 Al+log 1 Al dXN dYN
1

7

We prove
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Lemma 6.6.3. We have

r(a)
lim sup log/ o= 3 2oin log o Al+log
N {(B(P.e))

7—0,e—0,N—00

< vy)

M aXy dYy < —ent(P).

This will rely on the method of |[GP77] described in Section

Proof. For each configuration, we denote by n the number of points of any sign for which
r(z}) < 7, and separate over the value of n. Without loss of generality, we may assume that
these points are the first n, ones for the z’s and n, ones for the y’s, with n, +n, = n. We may
write

/ 8372 10g T AL 1og
iy (B(Pe))

2N n T(Zé)
SZ Z (5)(7]1\7)/ e % iy log = Ndzy L dzy,
x Y n

n=0 nz+ny=n

( Y;)

M aXn dYy

X / ~ dmnw—i-l e dJIN dyny+1 c. dyQN. (663)
in' (B(P.e))

Forany n > 0,1 > 7> 0and N > 1, define AR{,T as the set of n-tuples of points in A such
that all the nearest-neighbor distances at blown-up (by v N ) scale are smaller than 7. We define

Z(n,T,8,N) :/ e —5 ! dzl .dzp,
N

with z/ = z;VN.
Fixing the parameter 6 = 1//|log 7|, we may rewrite (6.6.3]) as
2N

r(a 1) < v)
/ B XN e T RN G R Y < S Z(n, 7, B, N)APY T
(B(P.e)) n=|dN|+1

|6N]
N N
A N dxp,+1..-deN dyp, +1 - .. dyaN.
+ Z Z ( nz ) ( ny ) (n77-7/67 )AQN—nmiNl(B( xXr $+1 (L‘N y y+1 yQN

n=0 ng+ny=n P.e))

Next, we claim that if n < N (which is the case here), we have
Z(n, 7,5, N) < 1"C". (6.6.4)
Assuming this claim is true, and observing that in(Xy, Yy) € B(P,¢) implies that
iN—n Ty TN Yy - - - YN) € B(P,2¢)

with obvious notation (for § small enough depending on ¢), so we may then write

/ o3 T2 10g " A1 10g !
iy (B(Pye))

B () (e

n=|6N]|+1nz+ny=k

( v;)

M aXn dYy

S N N Z N d dryd d
+ Z Z Ny ny (nu T, /85 ) = B Tng+1.--ATN yny-i-l ... QY2N-

n=0 nz+ny=n le(B(P,z-:))
(6.6.5)
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The first term in the right-hand side of (6.6.5)) is easily bounded above by CN 7N in view of
(6.6.4). For the second one, we note that by direct computations one may show that for n < N,

L)) ser
Ng+ny=n N ny

with lims_,o Cs = 1. Combining this with (6.6.4)) and inserting into (6.6.5)) we thus are led to

LBV oo T g e T e
e 2 2ui=1"98 "7 &= dXndYn

SCNTéN—I-(SNCéVCaN/ B dx5N+1...da?Ndy(;NJrl...dygN.
A2N=26N g H(B(Pg))

By the choice of § = 1/4/|log 7| we find that the first term is logarithmically negligible and thus

LB oo T g g T A 2
e~ 2 2ui=1'98 "¢ g dXn dYyN

i 1
lim sup — log/
N—oo ANiH(B(Pe))

1
<logCs + C6 + lim sup N log dxsn41-.-dey dysn41 - - dyan. (6.6.6)

N—oo //\2N25NﬂiN1(B(P,s))

But we have, from Proposition [6.2.10

1
lim sup lim sup N log drsny1---drxN dYsn+1 - - - dyon

e—=0 N-—oo //\2N—25NmiN1(B(1575))

< —N(1 - §)ent(P)

so letting € — 0 and 7 — 0 (hence § — 0) in (6.6.6]), we obtain the conclusion.
We now check (6.6.4)), following Section We will establish the more general bound

(6.6.7)

Z(n,7,8,N) < (CT”>

N

which implies (6.6.4) when n < N. We may assume that n > 1, otherwise (6.6.7)) is obvious
(both sides are equal to 1). First, we rewrite Z(n, 7,3, N) as

B LR r(S)OVN o
Z(n,7,B8,N) = € 2 2u=1%%" "7 dS,.
A

n
N,t

As in Section for each configuration (S1,...,Sy), we form the nearest-neighbor function i
F;, and associate to the configuration a directed graph with K € [1,n] connected components,
each component comprising a cycle of length 2 together with trees attached to the two vertices of
the cycle. We know moreover that the distances to the nearest neighbor |S; — S| are bounded
by 7/v/'N.

Splitting between isomorphisms classes of graphs and following the computations and using
the notation of Section [6.4] we now have to bound

—5 200 o <%Si_fFi m) -
e ds,. (6.6.8)

/A’Js,m{&(smﬂ}
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Let Lq,..., Lk be the K subsets of indices associated to v. We make the change of variables:

for i € Ly, such that i ¢ ¢4
IN 1

IN 1 N1

With respect to the new variables, the integral in (6.6.8]) is bounded by

2n 18p _8 . .

( n) e—gnlog VW 4Pk 7 2(pr—1) (1) 2 k/ e 2 (ZieLk\ck 10gul+210gu’z) I | du; duge dug
/ , k

N N Dk ing g

and

where D) is a (suitably enlarged) domain of integration for the new variables where they satisfy

1
Yoo lwlP <1, Jugl < 5=, Jup| <1
iELk\Ck * 2\/ﬁ *

and py denotes the cardinality of Ly. Clearly Dy, is included in the set that was denoted Dy in
Section so we deduce using Lemma that

1
_B o log(2lsi_sFi|‘/ﬁ

3 K
2 i=1 T ) — n n(liz) 7'2 Zk:1(pk_1)
dSp < () —————Diri,
N NB/AY P .

_(n n(1-2) 7_2(n—K)D”
N gyt Dirin -

e

/A;Lv,mﬁ(sl)v}

Summing over all isomorphism classes of v, we deduce that

n(1—£2)y n/2 2(n—K)
n 4 .. T
Z(n,,8,N) < <N> K§:1 Do, | Dirin, —573

n(1-8) _n n/2 n(1-8) _n Bn/4
n 1 T . n 4 T n n/2
< (N) NnIB/4 I(Z:1 ’Dn,K|DZT’Zn,K < <N> N”B/4 <2> CB )

which yields (6.6.7)). O

6.7 Leading order large deviations

In this section, we prove a large deviations upper bound at the leading order (N?) the joint
law of the empirical measures p3; and py, with rate function given by (6.7.1)).

a. The limiting energy

For any two probability measures pt, 4~ in P(A) we let
H(p*,p™) := min {/ |E*,E € L*(R*R?) s.t. —div B =2n(u" — ,u_)} : (6.7.1)
RQ

which represents the electrostatic interaction energy between y* and . The infimum in (6.7.1))
is achieved because the L?-norm is coercive and lower semi-continuous for the weak-L? topology.
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In fact it is not difficult to check that if H ( , ) is finite, it is equal to [p, |[E'°°|* where E'°°
is the “local electric field” defined as E'°°(z) := [, —Vlog |z — t|(dp™ (t) — du~(t)).
The functional H takes value in [0, +oo] and we have

Hut,p )=0 < p=pu". (6.7.2)

b. Large deviations upper bound
We give a large deviation upper bound at speed N? for the joint law of the empirical measures
+ d ux
pr and fiy.
Proposition 6.7.1. For any u*, u~ € P(A) we have
B + = + - p + -
lim sup lim sup — N 5 log Py ({(uN,uN) e B((u,p ),z—:)}) < —§H(u S ).

e—0 N—o0

Together with (6.7.2)) this essentially says that we must have ,uﬁ ~ py for N large, except
with very small (of order e~ 2) probability.

Proof. Let u*,u~ be in P(A) and € > 0. Using Lemma we may write
Py ({ (ks i) € Bt 17),0)})

1 3 , & N
< —— dXydYy exp (—2 (/ [VVive|? + ) log(r(a:)) + ) 10g(r(yz)>> :
i=1 i=1

ZNB SN A (uh o) EB((ut )0}
(6.7.3)

We claim that [|VVy,|? is lower-semi continuous in the following sense: if uj — pT and
py — p~ then

1 ) _
im inf — > + : .
lint 05 [ IV > H ) (67.4)

Indeed, a uniform bound on the L?-norm implies that {%VVN,T} ~ is tight in L?(R?,R?), let us
denote by E a limit point. For any N we have by definition

N N
—div (VVy,) =2 (Z ortea) — %" 5;5%'))
=1 i=1

and it easily implies that
—div E =27m(ut — 7).

On the other hand, by lower semi-continuity of the L?-norm with respect to weak convergence

we have 1
iminf / VVl™ 2 /RJ K

thus (6.7.4) holds, and together with (6.7.3)) it yields

lim sup lim sup Nf log P, ({(uﬁ,u&) € B((u™, u‘),s)})
e—0 N—o0
p

< ——H(,qu7 )—1}\rfnmf 5 log Zn g

+ limsup — e log/ exp ( (Z log(r(z;)) + Zlog(r(yﬁ)) dXndYy. (6.7.5)
i=1

N—oo
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Combining (6.7.5) with the control (6.1.3) on the partition function and with (6.3.1)) we get

_ _ B _
hmsuphmsupflogpﬁ ({(ME,MN) € B((u",p ),6)}) < —§H(u+,u ),

e—0 N—o00

which concludes the proof of the proposition. ]

c. Large deviations lower bound (sketch).

We remark (without providing details) that a complementary large deviations lower bound,
with the same rate function, can be derived by adapting the approximation constructions in
[BAZ98,Ser15|. Indeed, to construct an approximate configuration of points with enough volume
(in the exponential in N? scale), one may proceed as follows. First, one cancels the common
parts of py and p_ by positioning pairs of positive and negative charges (henceforth referred to
as dipoles) with intra-dipole separation of N~19 say and inter-dipole separation of at least N 1.
Then, one may use the construction of e.g. [Serl5, Theorem 2.3] and construct a sequence of
“well-separated” configurations (separation at least n/N ~1/2 hetween points with small enough n)
so that limsupy_,o. N 2wn(Xn, Yn) < H(up, p—) + C(n) where C(n) —p—o 0; the argument
in [BAZ9§| shows that the volume of such configurations is large enough.

6.8 Tail estimates for the complex Gaussian multiplicative chaos (by
Wei Wu)

In this appendix we apply Theorem [16] and Corollary to obtain the tail asymptotics of
subcritical complex Gaussian multiplicative chaos on R?. Let h be an instance of the Gaussian
free field (GFF) on R?, which we define below. Let D C R? be a bounded domain, we are
interested in the distribution of ‘ i) D ewh(x)daf;‘, for B € (0,1/2). This object appears in different
contexts, such as the partition function of complex random energy type models, the scaling
limit of the compactified height function in two dimensional dimer model [Dubll], and the
electric vertex operator in conformal field theory |Gaw97]. Another motivation comes from the
conjecture that this object describes the scaling limit of the magnetization of XY model in
the plasma phase [F'S81]. The Lee-Yang Theorem was proved for the XY model (see [LS81]),
therefore one may further conjecture that the characteristic function of | D eM=) dx has pure
imaginary zeros. Here we focus on another perspective, which is the tail behavior of [ D ) gy

and our approach is based on an identity relating the moments of ’ f D eiBh(x) dac) to the partition

function of a two component Coulomb gas (Lemma below). For simplicity we set D = A,
the unit cube.

Formally, let Ho(R?) = {¢: ¢ € C(R?), s.t. [ (x)dz =0}, and denote by H(R?) the
completion of Ho(R?) in L?(R?). The GFF is defined as a random distribution in (H(R?)),
such that for any py, po € H(R?), the covariances are given by

Cov ((h, p1) , (h, p2)) //Pl z) p2 (y) log |z — y| dzdy,

where (h, p) = [ h(z) p (x) dz. Therefore, to give a mathematical definition of e one immedi-
ately runs into the issue that h is only defined up to an additive constant, so that one can only

, . 2
hope to define " up to a multiplicative constant. However, as we explain below, ‘ i) D eiBh(x) da:’

can be uniquely defined, and we then simply set ‘ Ip e’ﬂh(x)dx‘ =/I/p eiﬂh(f)dx|2.
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Let h, denote the GFF on a disk D, = {z: |z| < r} with zero boundary condition, and let
h(™) be the massive GFF on R? with mass m. h,, h{™) are Gaussian processes with covariances
given by

Cov (hy (), hr () = gr(z,y)
= —log|x/r—y/7“|+10g‘1—5@/r2

Y

and Cov (h(m) (z), h(™) (y)) = (-A+ mz)_1 (z,y), respectively. Then, as was explained in

Section 6 of [LRV15], both ¢?** and e are well defined as random distributions in (C§°(R?)Y
. 2

for 3 € (0,1/2). Therefore we can define the random variable ‘ Ip elﬁh(:”)dx‘ as the distributional

. 2 o 2
weak limit of ‘ I ezﬁh”(x)daz’ as r — 00, or the distributional weak limit of ’ I ¢iBh >($)da:’ as

m — 0. Indeed, given py, p2 € H(R?), since
Tll{gO Cov (<h7“7 P1> ) <hr7P1>) = TE&O COV((h(m)>p1>) <h(m)a Pl>) = Cov (<h7 P1> ) <h7P1>) )

it is possible to prove that the two constructions lead to the same limiting object. We will not
give a proof of the equivalence in this appendix, but instead construct the limiting object using
the first approach.

As was explained in Section 6.2 of |[LRV15], one needs a regularization procedure to define
el For e > 0 and x € D, let hS () denote the average of h on the circle of radius € centered
at x (we assume h to be identically zero outside D, ). hf is a Gaussian process with covariances
given by

It was shown in [LRV15] that as e — 0,
5—62/2/ Bhi(®) 1 / P (@) dg in Ly, for p>1.
D D

Some properties of the circle averaged field hS were summarized in Section 3.1 of [DS11]. In
particular,

Varh; (z) =log C (z; D,) — loge,

where C (z; D,) = (1 — |#|? /r2) is the conformal radius of D, from z. Also notice that when
|z —y| > 2¢, ¢5(x,y) = gr (x,y), and ¢& (z,y) — 0 if either x or y tends to dD,. Moreover, for
all 7 > 2 (which we will assume for the rest of the argument) and € < 1,

sup g5 (z,y)| < —loge + C1, for some Cy < oco.
z,y€Dr
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We may therefore compute, for £ € N,

E '/ B (@) g
D

—B2/2 / GIBHE() gy
D

2k

2k
= IimE

e—0

k k
— lime R / T] et @ ] 6% @ azag
D® )

e—0 2k
1=

Jj=1

e—0

,ﬁv k he (2:)— k e (u:
— lims_BQk/ e 2 ar(Zizl T(xl) Zi:l r(f%))dfdgj
D®2k
k

1 B*/2 [licicick e~ 9 (i,25) =95 (Yi,5) g2 o
= lim H ( ) . e d.’]jdy,
e=0 Jpear ;-5 \C (zi; Dr) C (yi; Dy) [1;; e 97 @)

where we applied to obtain the last equation. We now show that the limit above equals

—g(zi 2 . — o B2
/ ﬁ ( 1 >B2/2 H1<i<j<ke gr(zi, ])e 9r (Yisyj) dfdg
pe2k iy \C (235 Dr) C (yi; Dy) i e—9r(xiy;)

62

s — sl s — s

_ / H1<z<j<lc’ i i |yi yj‘ F, (7, 8) d7dj,
D®2k Hi,j T — yj|

2 2

E 2\~ 2\ N — i 2 p?
FT (fv _‘76) = H <1_’9:2’> <1_|yz|> l Hla] |1 xzyj/r | ‘| '

72 [icicjer |1 — @i /r?| |1 — yiy; /72|

To show the equality of (6.8.1]) and (6.8.2)), given £ > 0, set

2

D, = {(f,??) € D% : min |v; — x| > 2¢,min|y; — y;| > 2, min |z; — y;| > 25} :
2¥) 7,7 2%

For (Z, ) € D., the integrand in ( (6.8.1])) and ((6.8.2])) coincide. Since the integrand in ((6.8.2)))
has integrable singularities when 5 € (0, \/5), it suffices to prove

k

lim 1 )52/2 H1<’i<j<]€ e_gi(xi7rj)e_g$(yi7yj)
C (yi; Dy)

B
dzdy = 0.
e—=0 D®2k\DE Zzl_[l (C ($17 Dr) Hl,] e_g'?(wivyj) ) ray

Given (1, ...,x1), (y1,...,yr) € R¥, one can define the Gale-Shapley matching o (, %) € Sy of
with ¢, by
1. Find z; and y;, such that
Vi’ 3y e = yil < |z —yyp| and |z —ysl < |lze =yl

and set o (i) = j.
2. Delete the points that have been matched in Step 1.

3. Iterate the procedure until all the points have been matched.
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Set
B. = (D**\D.) N {(7,7) : o (7.7) = 1d}..

And by symmetry, it suffices to prove the integration over B, vanishes as ¢ — 0.
Using the properties of g5 (-, ), we have

e~ 9 (z,y)
sup sup — e < 00.
e<e~C1  myszeD € 97 (@:2)
|le—y|<2|z—z|

Therefore, by the same argument as |[LRV15, Lemma A.2], for (Z,3) € B. we have the upper
bound

icicj<r e~ 97 (@i:25) =97 (Visy;
—qf€ . .
Hi,j e gr(x“y])

N b
) <CkB ] B2 97 (@)
=1

thus

ﬁ ( 1 >52/2 [icicjor e 9@ =05 (i) Bqudq
/B A C (zi; Dy) C (yi; Dy) [T e—95 (i y;) ray

u 1 g B2 g5 (%i,y:)
< rx'hi . -
= C(k’mj/ (C(xi;Dr)C@i;DT)) ¢ deidyi

Now, for (Z,¥) € B, if for some i, |z; — y;| < 2¢, then because gZ (zi,y;) < —loge + O (1),
the integrand in (6.8.3]) is bounded by 0(6*52). The volume of the point configuration is at
most O (52), thus (6.8.3) has integrable singularities. Since the volume of B, goes to zero as
€ — 0, we conclude that equals (6.8.2)).

From the explicit expression of F., we see that F, (Z, 7, 3) — 1 uniformly for all (Z, ) € D®?*,
as r — oo. Finally, noting Corollary we can send r — oo and apply the dominated

convergence theorem to obtain

Lemma 6.8.1. For 8 € (0, \@), keN, and ‘fD ewh(w)da?‘ defined in the sense above, we have

E ‘/ eBh@) g
D

where Zy, 952 is defined as (6.1.2).

2k
= Zk,QﬁQa

Corollary 6.8.2. For € (0,1/2),
P (‘/ P 4y
D

c* (B) = % exp (—1 + 572 inf )]—"ﬁ> .

Pin'u,l (A7XS

2 2
> x> = exp (—c* (B) x8* 4 o(xr? )> ,as T — 0o,

and

(See (6.1.8) for the definition of Fjz.)
Proof. By Chebyshev’s inequality and Lemma [6.8.1]

log P (‘/ e PM@) gy
D

E ’fD etPh(@) g7

’2.%
> x) < log poTe = log Z}, 952 — 2k log x.
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Apply Corollary choose k* to optimize the right hand side while neglecting the o (k) term
2
in log Zj, 952, we obtain k* = |3~%c* (8) 277 |, and

P <’/ eBME) gy
D

2
For the lower bound, fix constants C1,d;, such that Cid; + fgf exp (—c* (8) xﬁ2> dx = 1.

Let Y be the non-negative random variable whose p.d.f is given by

> m) < exp (—c* (B) oo + 0(3:522)) .

dl ifOSCCSCl
=

exp (c* (B) :cl322> ite > C

. 2k
An explicit computation gives logEY? = logE UD e’Bh(m)dx‘ + o(k). Given § > 0, denote
, 2k
Ys = (1 —6) Y2 Then there exists ko (&), such that for all k > ko (), EY} <E ’fD ewh(m)dm‘ .
’2]6

Take Cy = Co (§) < 00, such that for all k € N, E (Y5 — CQ)k <E ‘fD (@) gy . Therefore the

tail of (@) dz| dominates the tail of Ys — Cs. Then for x > /Ch,
D

P ‘/ eBhE) g,
D

2
>x2> > P(n—()px?)
B :C2+C2
- oo )
2 1/82
= em(—C"(ﬂ)(ﬂi?) )

Taking x sufficiently large yields the lower bound. O
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Une noix, qu’y a-t-il a 'intérieur d’une noix ?
Qu’est-ce qu’on y voit, quand elle est ouverte ?

- Quand elle est ouverte ?

On n’a pas le temps d’y voir, on la croque et puis
bonsoir,

On n’a pas le temps d’y voir, on la croque,

et puis bonsoir...

Les découvertes !

Charles Trenet, Une noiz.
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Sujet : Comportement microscopique de particules en interaction :
gaz de Coulomb, Riesz et log-gases.

Résumé : Cette these est consacrée a 1’étude de systemes modélisant des particules
chargées en interaction, ou les valeurs propres de matrices aléatoires. On s’intéresse aux gaz
avec interaction logarithmique en dimension 1 et 2, et aux interactions de Coulomb/Riesz
en dimension générale. On en décrit le comportement microscopique par le biais d’un
principe de grandes déviations que satisfait la loi des champs empiriques et qui est gou-
verné par une fonctionnelle d’énergie libre dans laquelle apparait la dépendance en la tem-
pérature. Parmi les minimiseurs de cette énergie libre, on compte les processus ponctuels
Sine-beta définis dans le contexte des matrices aléatoires. On démontre la convergence
des minimiseurs vers un processus de Poisson a haute température et, en dimension 1,
on prouve la cristallisation du systéme dans la limite de basse température. Dans le cas
des interactions logarithmiques en dimension 2, on montre une loi locale qui controle les
fluctuations a toute échelle mésoscopique. On traite aussi le cas du gaz de Coulomb bi-
dimensionnel avec des charges de signes opposés.

Mots clés : physique statistique, matrices aléatoires, log-gases, interactions de Riesz,
sytemes de Coulomb, grandes déviations, champs empiriques, cristallisation

Subject : Microscopic behavior of interacting particles: Coulomb,
Riesz and log-gases

Résumé : This thesis is devoted to the study of statistical physics systems which can
represent charged interacting particles or eigenvalues of random matrices. We are inter-
ested in gases with logarithmic interaction in dimension 1 and 2, or with Coulomb/Riesz
interactions in general dimension. We describe their microscopic behavior by showing that
the law of the empirical fields obeys a Large Deviation Principle governed by a free energy
functional in which the temperature dependence appears. Minimizers of this free energy
include the Sine-beta point processes defined in random matrix theory. We show the con-
vergence to a Poisson point process at high temperature and in dimension 1 we prove
crystallization in the zero temperature limit. For two-dimensional log-gases we establish a
local law which bounds the fluctuations at any mesoscopic scale. We also treat the case of
a two-dimensional Coulomb gas with charges of opposite sign.

Keywords : statistical physics, random matrices, log-gases, Riesz interactions, Coulomb
sytems, large deviations, empirical fields, crystallization
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