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Goal: comparing two properties of stationary point processes:

▶ Hyperuniformity (small number variance in large disks)

▶ Finite transportation distance to a lattice

With D. Dereudre, D. Flimmel, and M. Huesmann (2024):

▶ (Non)-hyperuniformity of perturbed lattices

▶ The link between hyperuniformity, Coulomb energy, and
Wasserstein distance to Lebesgue for two-dimensional point
processes.



Number variance

▶ X a point configuration (loc. finite collection of points in Rd)

▶ Dr the disk of radius r > 0, |Dr | its Lebesgue measure.

▶ Points(X,Dr ) the number of points of X inside Dr

If Ẋ is a random point configuration, write:

σẊ(r) :=
1

|Dr |
Var

[
Points(Ẋ,Dr )

]
.

“Rescaled number variance” for the point process Ẋ.
Interest in the asymptotic behavior of σẊ(r) as r → ∞.



Hyperuniformity

A point process / random point configuration Ẋ is said to be
hyperuniform when:

lim
r→∞

σẊ(r) = 0.

1. For “iid points” (Poisson point process), σ(r) = 1.

2. For points on a “stationary lattice”, σ(r) = O(r−1).

3. This cannot be beaten. Beck, Acta Mathematica 1987
(“Class-I hyperuniform”)

Gabrielli, Joyce, Sylos Labini, 2002 super-homogeneous
Torquato, Stillinger, 2003 hyperuniform



Interest?

“Order within disorder”.

▶ Lattices represent “usual” order: correlations persists at
infinity.

▶ The Ginibre ensemble from RMT (eigenvalues of a N × N
matrix with i.i.d. complex Gaussian entries, then N → ∞,
Ginibre ’64) is class-I hyperuniform.

▶ The two-point correlation function of the Ginibre ensemble
decays as e−|x−y |2!!

No “order” in the usual sense of long-range correlations. And yet
“suppression of charge fluctuations” Martin-Yalcin, Lebowitz 80’s
one-component plasmas / Coulomb gases.
Torquato 2018: survey of examples of various nature.



Goals:

1. Find sufficient conditions for hyperuniformity.

2. Construct new examples (with various speeds for σ?).

Theorem (Gacs, Szasz 1975)

In any dimension, i.i.d. perturbations of a lattice + finite first
moment =⇒ class-I hyperuniform.

Claim (Gabrielli, 2004)

In dimension 2, dependent perturbations of a lattice + finite
second moment =⇒ hyperuniform.
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Perturbations of a lattice?

▶ (px)x∈Zd “perturbation field” with Zd-invariant distribution

▶ Identically distributed + more invariance conditions.
Independent versus dependent case. Size of perturbations.

▶ u uniform in [0, 1]d (independent of perturbations)

▶ Perturbed stationary lattice:

Ẋ :=
∑
x∈Zd

δx+px+u



Finite Wasserstein distance

Possible definition: we say that Ẋ has finite s-Wasserstein distance
to the stationary lattice when Ẋ can be written as a perturbed
lattice:

Ẋ :=
∑
x∈Zd

δx+px+u

for some Zd-invariant perturbation field s.t. E[|p0|s ] < +∞.

Wasserstein / Optimal transport interpretation?



First result: from Wasserstein to Hyperuniform

The physics literature (Gabrielli, 2004, Kim-Torquato 2018) claims
that: in dimension 2, perturbations with finite second moment
cannot break hyperuniformity.

Theorem (Dereudre-Flimmel-Huesmann-L. ’24)

▶ In dimension 2, finite 2-Wasserstein distance to a stationary
lattice implies hyperuniformity.
No information on the speed of σ(r) → 0 in general!

▶ In dimension ≥ 3, there are arbitrarily small perturbations of
Zd s.t. σ(r) → +∞.

▶ In any dimension, there are hyperuniform processes such that
σ(r) → 0 arbitrarily slowly.



Converse results?

(2024) Lachièze-Rey, Yogeshwaran, and Butez, Dallaporta,
Garcia-Zelada: results of the type “hyperuniform + conditions
imply finite 2-Wasserstein distance”.

Theorem (Huesmann-L.)

▶ Hyperuniformity does not imply finite 2-Wasserstein distance
to a lattice in general.

▶ However, if we impose that σ(r) → 0 in a reasonable way

σ(r) ≤ Cr−ϵ, σ(r) ≤ C ln(r)−1−ϵ,
∑
n≥1

σ(2n) < +∞ (⋆-HU)

then ⋆-HU =⇒ finite 2-Wasserstein distance to a lattice.



Summary

In dimension 2:

▶ Two implications

⋆-HU =⇒ finite 2-Wasserstein to a lattice =⇒ HU.

▶ “Gap” consists of processes such that σ(r) → 0 very slowly.
Those processes exist!

Typology of HU processes (Torquato):

1. Class-I (lattices + i.i.d perturbations, Ginibre...) σ(r) ∼ Cr−1

2. Class-II σ(r) ∼ Cr−1 ln r

3. Class-III σ(r) ∼ Cr−ϵ, for ϵ > 0.

4. ....
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Perturbations with second moment are hyperuniform

Follows the lines of Gabrielli 2004:

1. Want to show: rescaled number variance σ(r) → 0

2. Variance ↔ correlation structure of the perturbed lattice

3. “reduced covariance measure” has an explicit expression:

α
(2)
red(B) = E

∑
x∈Zd

1 {x + px − p0 ∈ B}

 (1)

Fourier side: “structure factor” S

4. Large scale properties of α
(2)
red ↔ small frequencies for S .

5. Taylor expansion for small frequencies, covariance structure of
the perturbations appear. Need second moment!

6. Difficult part: justifying that only small frequencies matter.
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⋆-HU implies finite Wasserstein distance

▶ True “Wasserstein” interpretation: need a theory of optimal
transportation for point processes. see Martin’s talk,
Thursday 2pm “Optimal Transport and the Role of Entropy”.
Infinite-volume theory, constructed as “per unit volume” limits
for invariant objects.

Distances to the Lebesgue measure / a lattice are equivalent.
▶ In finite-volume, classical inequalities relating:

1. 2-Wasserstein distance between m0 and Lebesgue measure in a
square.

2. The negative Sobolev H−1 norm of m0 − Lebesgue in that
square.

Ledoux “On optimal matching of Gaussian samples” 2019:

W2(m0, Lebesgue) ≤ C∥m0 − Lebesgue∥H−1

(Any dimension!)
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⋆-HU implies finite Wasserstein distance - II

Controlling H−1 =⇒ controlling 2-Wasserstein distance.
H−1 norm of m0 − Lebesgue is related to Coulomb energy.∫∫

g(x − y)d (m0 − Lebesgue) (x)d (m0 − Lebesgue) (y),

where g is the Coulomb kernel.

Theorem (HL)

1. In any dimension, finite Coulomb energy of a point process
implies finite 2-Wasserstein distance to the Lebesgue measure.

2. The converse is (barely false) but becomes true under uniform
density condition.

3. In dimension 2, ⋆-HU is equivalent (!) to finite Coulomb.

The last step relies on a recent result of Sodin-Yakir-Wenmann.



Counter-example: hyperuniform but not finite distance

Take ΛN := [−
√
N,

√
N]2. Throw |ΛN | i.i.d. points in ΛN .

▶ Average Wasserstein distance between the points and
Lebesgue (or a portion of lattice...) is CN2logN Ajtai,
Komlos, Tusnady 1984.

▶ Within ΛN , the rescaled number variance is of order 1...

Tile R2 with copies of ΛN , throw |ΛN | i.i.d. points in each copy.

▶ The transportation cost per unit volume grows like logN

▶ The rescaled number variance becomes small at large scales.

Choose N randomly in such a way that:∑
n≥1

P(N = n) log n = +∞.
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Thank you for your attention!


