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Goal: comparing two properties of stationary point processes:
» Hyperuniformity (small number variance in large disks)
> Finite transportation distance to a lattice

With D. Dereudre, D. Flimmel, and M. Huesmann (2024):
» (Non)-hyperuniformity of perturbed lattices

» The link between hyperuniformity, Coulomb energy, and
Wasserstein distance to Lebesgue for two-dimensional point
processes.



Number variance

» X a point configuration (loc. finite collection of points in RY)
» D, the disk of radius r > 0, |D,| its Lebesgue measure.
» Points(X, D,) the number of points of X inside D,

If X is a random point configuration, write:

1 .
7x(1) = Ve [Points(xp,) .

“Rescaled number variance” for the point process X.
Interest in the asymptotic behavior of oy (r) as r — oo.



Hyperuniformity

A point process / random point configuration X is said to be
hyperuniform when:

rll[go (Tx(r) =0.
1. For “iid points” (Poisson point process), o(r) = 1.
2. For points on a “stationary lattice”, o(r) = O(r™1).
3. This cannot be beaten. Beck, Acta Mathematica 1987
(“Class-1 hyperuniform™)

Gabrielli, Joyce, Sylos Labini, 2002 super-homogeneous
Torquato, Stillinger, 2003 hyperuniform



Interest?

“Order within disorder”.

P> Lattices represent “usual” order: correlations persists at
infinity.

» The Ginibre ensemble from RMT (eigenvalues of a N x N
matrix with i.i.d. complex Gaussian entries, then N — oo,
Ginibre '64) is class-l hyperuniform.

» The two-point correlation function of the Ginibre ensemble

2
decays as e Y1l
No “order” in the usual sense of long-range correlations. And yet
“suppression of charge fluctuations” Martin-Yalcin, Lebowitz 80's
one-component plasmas / Coulomb gases.
Torquato 2018: survey of examples of various nature.
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Theorem (Gacs, Szasz 1975)

In any dimension, i.i.d. perturbations of a lattice + finite first
moment —> class-I hyperuniform.

Claim (Gabrielli, 2004)

In dimension 2, dependent perturbations of a lattice + finite
second moment = hyperuniform.



Perturbations of a lattice?

> (Px)yeze “perturbation field” with Z9-invariant distribution

» Identically distributed + more invariance conditions.
Independent versus dependent case. Size of perturbations.

» u uniform in [0,1]9 (independent of perturbations)
> Perturbed stationary lattice:

X = Z 6x+px+u

x€Z4



Finite Wasserstein distance

Possible definition: we say that X has finite s-Wasserstein distance
to the stationary lattice when X can be written as a perturbed

lattice:
X:= Z Ox+px-tu
x€eZd

for some Z9-invariant perturbation field s.t. [E[|pg|*] < +oc.

Wasserstein / Optimal transport interpretation?



First result: from Wasserstein to Hyperuniform

The physics literature (Gabrielli, 2004, Kim-Torquato 2018) claims
that: in dimension 2, perturbations with finite second moment
cannot break hyperuniformity.

Theorem (Dereudre-Flimmel-Huesmann-L. '24)

» In dimension 2, finite 2-Wasserstein distance to a stationary
lattice implies hyperuniformity.
No information on the speed of o(r) — 0 in general!

» In dimension > 3, there are arbitrarily small perturbations of
74 s.t. o(r) = 4o0.

» In any dimension, there are hyperuniform processes such that
o(r) — 0 arbitrarily slowly.



Converse results?

(2024) Lachieze-Rey, Yogeshwaran, and Butez, Dallaporta,
Garcia-Zelada: results of the type “hyperuniform + conditions
imply finite 2-Wasserstein distance”.

Theorem (Huesmann-L.)

» Hyperuniformity does not imply finite 2-Wasserstein distance
to a lattice in general.

» However, if we impose that o(r) — 0 in a reasonable way

a(r) < Cr ¢, o(r) < Cin(r)™7%, Y 0(2") < 400 (x-HU)

n>1

then x-HU = finite 2-Wasserstein distance to a lattice.
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> Two implications
*-HU — finite 2-Wasserstein to a lattice — HU.

> “Gap" consists of processes such that o(r) — 0 very slowly.
Those processes exist!

Typology of HU processes (Torquato):
1. Class-| (lattices + i.i.d perturbations, Ginibre...) o(r) ~ Cr—!
2. Class-Il o(r) ~ Cr7tinr
3. Class-Ill o(r) ~ Cr=¢, for e > 0.
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Perturbations with second moment are hyperuniform

Follows the lines of Gabrielli 2004:
1. Want to show: rescaled number variance o(r) — 0
2. Variance <> correlation structure of the perturbed lattice

3. "reduced covariance measure” has an explicit expression:

al)(B)=E | Y 1{x+pc—po € B} (1)
xezd

Fourier side: “structure factor” S

4. Large scale properties of 0‘52 <> small frequencies for S.

5. Taylor expansion for small frequencies, covariance structure of
the perturbations appear. Need second moment!

6. Difficult part: justifying that only small frequencies matter.
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> True “Wasserstein” interpretation: need a theory of optimal
transportation for point processes. see Martin's talk,
Thursday 2pm “Optimal Transport and the Role of Entropy”.
Infinite-volume theory, constructed as “per unit volume” limits
for invariant objects.
Distances to the Lebesgue measure / a lattice are equivalent.
» In finite-volume, classical inequalities relating:

1. 2-Wasserstein distance between mg and Lebesgue measure in a
square.

2. The negative Sobolev H~! norm of my — Lebesgue in that
square.

Ledoux “On optimal matching of Gaussian samples” 2019:
W (myg, Lebesgue) < C||mg — Lebesgue||y-1

(Any dimension!)



*-HU implies finite Wasserstein distance - |l

Controlling H™! == controlling 2-Wasserstein distance.
H~! norm of mg — Lebesgue is related to Coulomb energy.

//hg(x — y)d (mg — Lebesgue) (x)d (mg — Lebesgue) (y),

where g is the Coulomb kernel.
Theorem (HL)
1. In any dimension, finite Coulomb energy of a point process
implies finite 2-Wasserstein distance to the Lebesgue measure.

2. The converse is (barely false) but becomes true under uniform
density condition.

3. In dimension 2, x-HU is equivalent (!) to finite Coulomb.

The last step relies on a recent result of Sodin-Yakir-Wenmann.



Counter-example: hyperuniform but not finite distance
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Counter-example: hyperuniform but not finite distance

Take Ay := [-V/N,V/N]?. Throw |Ay| i.i.d. pointsin Ay.
P> Average Wasserstein distance between the points and

Lebesgue (or a portion of lattice...) is CN?log N Ajtai,
Komlos, Tusnady 1984.

» Within Ay, the rescaled number variance is of order 1...
Tile R? with copies of Ay, throw |Ay/| i.i.d. points in each copy.

> The transportation cost per unit volume grows like log N/

» The rescaled number variance becomes small at large scales.

Choose N randomly in such a way that:

ZIP’ n)log n = +oo.

n>1



Thank you for your attention!



