Hyperuniformity vs. finite 2-Wasserstein distance to a lattice

Thomas Leblé

CNRS - Université de Paris

Bernoulli World Congress 2024 - Bochum

Goal: comparing two properties of stationary point processes:

- Hyperuniformity (small number variance in large disks)
- ► Finite transportation distance to a lattice

With D. Dereudre, D. Flimmel, and M. Huesmann (2024):

- (Non)-hyperuniformity of perturbed lattices
- The link between hyperuniformity, Coulomb energy, and Wasserstein distance to Lebesgue for two-dimensional point processes.

Number variance

- ightharpoonup X a point configuration (loc. finite collection of points in \mathbb{R}^d)
- ▶ \mathcal{D}_r the disk of radius r > 0, $|\mathcal{D}_r|$ its Lebesgue measure.
- ▶ Points($\mathbf{X}, \mathcal{D}_r$) the number of points of \mathbf{X} inside \mathcal{D}_r

If $\hat{\mathbf{X}}$ is a random point configuration, write:

$$\sigma_{\dot{\mathbf{X}}}(r) := \frac{1}{|\mathcal{D}_r|} \operatorname{Var} \left[\operatorname{Points}(\dot{\mathbf{X}}, \mathcal{D}_r) \right].$$

"Rescaled number variance" for the point process $\dot{\mathbf{X}}$. Interest in the asymptotic behavior of $\sigma_{\dot{\mathbf{X}}}(r)$ as $r \to \infty$.

Hyperuniformity

A point process / random point configuration **X** is said to be **hyperuniform** when:

$$\lim_{r\to\infty}\sigma_{\dot{\mathbf{X}}}(r)=0.$$

- 1. For "iid points" (Poisson point process), $\sigma(r) = 1$.
- 2. For points on a "stationary lattice", $\sigma(r) = O(r^{-1})$.
- This cannot be beaten. Beck, Acta Mathematica 1987 ("Class-I hyperuniform")

Gabrielli, Joyce, Sylos Labini, 2002 super-homogeneous Torquato, Stillinger, 2003 hyperuniform

Interest?

"Order within disorder".

- ► Lattices represent "usual" order: correlations persists at infinity.
- ▶ The Ginibre ensemble from RMT (eigenvalues of a $N \times N$ matrix with i.i.d. complex Gaussian entries, then $N \to \infty$, Ginibre '64) is class-I hyperuniform.
- The two-point correlation function of the Ginibre ensemble decays as $e^{-|x-y|^2}!!$

No "order" in the usual sense of long-range correlations. And yet "suppression of charge fluctuations" Martin-Yalcin, Lebowitz 80's one-component plasmas / Coulomb gases.

Torquato 2018: survey of examples of various nature.

Goals:

- 1. Find sufficient conditions for hyperuniformity.
- 2. Construct new examples (with various speeds for σ ?).

Goals:

- 1. Find sufficient conditions for hyperuniformity.
- 2. Construct new examples (with various speeds for σ ?).

Theorem (Gacs, Szasz 1975)

In any dimension, i.i.d. perturbations of a lattice + finite first moment \implies class-I hyperuniform.

Goals:

- 1. Find sufficient conditions for hyperuniformity.
- 2. Construct new examples (with various speeds for σ ?).

Theorem (Gacs, Szasz 1975)

In any dimension, i.i.d. perturbations of a lattice + finite first moment \implies class-I hyperuniform.

Claim (Gabrielli, 2004)

In dimension 2, dependent perturbations of a lattice + finite second moment \implies hyperuniform.

Perturbations of a lattice?

- $ightharpoonup (p_{x})_{x\in\mathbb{Z}^{d}}$ "perturbation field" with \mathbb{Z}^{d} -invariant distribution
- ► Identically distributed + more invariance conditions.

 Independent versus dependent case. Size of perturbations.
- ightharpoonup u uniform in $[0,1]^d$ (independent of perturbations)
- ▶ Perturbed stationary lattice:

$$\dot{\mathbf{X}} := \sum_{\mathbf{x} \in \mathbb{Z}^d} \delta_{\mathbf{x} + \mathbf{p}_{\mathbf{x}} + \mathbf{u}}$$

Finite Wasserstein distance

Possible definition: we say that $\dot{\mathbf{X}}$ has finite s-Wasserstein distance to the stationary lattice when $\dot{\mathbf{X}}$ can be written as a perturbed lattice:

$$\dot{\mathbf{X}} := \sum_{\mathbf{x} \in \mathbb{Z}^{\mathsf{d}}} \delta_{\mathbf{x} + \mathbf{p}_{\mathbf{x}} + \mathbf{u}}$$

for some \mathbb{Z}^d -invariant perturbation field s.t. $\mathbb{E}[|p_0|^s] < +\infty$.

Wasserstein / Optimal transport interpretation?

First result: from Wasserstein to Hyperuniform

The physics literature (Gabrielli, 2004, Kim-Torquato 2018) claims that: in dimension 2, perturbations with finite second moment cannot break hyperuniformity.

Theorem (Dereudre-Flimmel-Huesmann-L. '24)

- In dimension 2, finite 2-Wasserstein distance to a stationary lattice implies hyperuniformity. No information on the speed of $\sigma(r) \to 0$ in general!
- ▶ In dimension ≥ 3 , there are arbitrarily small perturbations of \mathbb{Z}^d s.t. $\sigma(r) \to +\infty$.
- ▶ In any dimension, there are hyperuniform processes such that $\sigma(r) \rightarrow 0$ arbitrarily slowly.

Converse results?

(2024) Lachièze-Rey, Yogeshwaran, and Butez, Dallaporta, Garcia-Zelada: results of the type "hyperuniform + conditions imply finite 2-Wasserstein distance".

Theorem (Huesmann-L.)

- ► Hyperuniformity does not imply finite 2-Wasserstein distance to a lattice in general.
- ▶ However, if we impose that $\sigma(r) \rightarrow 0$ in a reasonable way

$$\sigma(r) \leq C r^{-\epsilon}, \quad \sigma(r) \leq C \ln(r)^{-1-\epsilon}, \quad \sum_{n \geq 1} \sigma(2^n) < +\infty \ (\star ext{-HU})$$

then *-HU \Rightarrow finite 2-Wasserstein distance to a lattice.

Summary

In dimension 2:

► Two implications

```
\star-HU \implies finite 2-Wasserstein to a lattice \implies HU.
```

• "Gap" consists of processes such that $\sigma(r) \to 0$ very slowly. Those processes exist!

Summary

In dimension 2:

► Two implications

$$\star$$
-HU \implies finite 2-Wasserstein to a lattice \implies HU.

• "Gap" consists of processes such that $\sigma(r) \to 0$ very slowly. Those processes exist!

Typology of HU processes (Torquato):

- 1. Class-I (lattices + i.i.d perturbations, Ginibre...) $\sigma(r) \sim Cr^{-1}$
- 2. Class-II $\sigma(r) \sim Cr^{-1} \ln r$
- 3. Class-III $\sigma(r) \sim Cr^{-\epsilon}$, for $\epsilon > 0$.
- 4.

Follows the lines of Gabrielli 2004:

1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$

Follows the lines of Gabrielli 2004:

- 1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$
- 2. Variance \leftrightarrow correlation structure of the perturbed lattice

Follows the lines of Gabrielli 2004:

- 1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$
- 2. Variance ↔ correlation structure of the perturbed lattice
- 3. "reduced covariance measure" has an explicit expression:

$$\alpha_{red}^{(2)}(B) = \mathbb{E}\left[\sum_{x \in \mathbb{Z}^d} \mathbf{1}\left\{x + p_x - p_0 \in B\right\}\right]$$
(1)

Fourier side: "structure factor" S

Follows the lines of Gabrielli 2004:

- 1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$
- 2. Variance ↔ correlation structure of the perturbed lattice
- 3. "reduced covariance measure" has an explicit expression:

$$\alpha_{red}^{(2)}(B) = \mathbb{E}\left[\sum_{x \in \mathbb{Z}^d} \mathbf{1}\left\{x + p_x - p_0 \in B\right\}\right]$$
(1)

Fourier side: "structure factor" S

4. Large scale properties of $\alpha_{red}^{(2)} \leftrightarrow \text{small frequencies for } \mathcal{S}$.

Follows the lines of Gabrielli 2004:

- 1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$
- 2. Variance ↔ correlation structure of the perturbed lattice
- 3. "reduced covariance measure" has an explicit expression:

$$\alpha_{red}^{(2)}(B) = \mathbb{E}\left[\sum_{x \in \mathbb{Z}^d} \mathbf{1}\left\{x + p_x - p_0 \in B\right\}\right]$$
(1)

Fourier side: "structure factor" S

- 4. Large scale properties of $\alpha_{red}^{(2)} \leftrightarrow \text{small frequencies for } S$.
- 5. Taylor expansion for small frequencies, covariance structure of the perturbations appear. Need second moment!

Follows the lines of Gabrielli 2004:

- 1. Want to show: rescaled number variance $\sigma(r) \rightarrow 0$
- 2. Variance ↔ correlation structure of the perturbed lattice
- 3. "reduced covariance measure" has an explicit expression:

$$\alpha_{red}^{(2)}(B) = \mathbb{E}\left[\sum_{x \in \mathbb{Z}^d} \mathbf{1}\left\{x + p_x - p_0 \in B\right\}\right]$$
(1)

Fourier side: "structure factor" S

- 4. Large scale properties of $\alpha_{red}^{(2)} \leftrightarrow \text{small frequencies for } S$.
- 5. Taylor expansion for small frequencies, covariance structure of the perturbations appear. Need second moment!
- 6. Difficult part: justifying that only small frequencies matter.

▶ True "Wasserstein" interpretation: need a theory of optimal transportation for point processes. see Martin's talk, Thursday 2pm "Optimal Transport and the Role of Entropy". Infinite-volume theory, constructed as "per unit volume" limits for invariant objects.

▶ True "Wasserstein" interpretation: need a theory of optimal transportation for point processes. see Martin's talk, Thursday 2pm "Optimal Transport and the Role of Entropy". Infinite-volume theory, constructed as "per unit volume" limits for invariant objects.

Distances to the Lebesgue measure / a lattice are equivalent.

▶ True "Wasserstein" interpretation: need a theory of optimal transportation for point processes. see Martin's talk, Thursday 2pm "Optimal Transport and the Role of Entropy". Infinite-volume theory, constructed as "per unit volume" limits for invariant objects.

Distances to the Lebesgue measure / a lattice are equivalent.

- In finite-volume, classical inequalities relating:
 - 1. 2-Wasserstein distance between \mathbf{m}_0 and Lebesgue measure in a square.
 - 2. The negative Sobolev H^{-1} norm of \mathbf{m}_0 Lebesgue in that square.

➤ True "Wasserstein" interpretation: need a theory of optimal transportation for point processes. see Martin's talk,
Thursday 2pm "Optimal Transport and the Role of Entropy".
Infinite-volume theory, constructed as "per unit volume" limits for invariant objects.

Distances to the Lebesgue measure / a lattice are equivalent.

- In finite-volume, classical inequalities relating:
 - 1. 2-Wasserstein distance between \mathbf{m}_0 and Lebesgue measure in a square.
 - 2. The negative Sobolev H^{-1} norm of \mathbf{m}_0 Lebesgue in that square.

Ledoux "On optimal matching of Gaussian samples" 2019:

$$W_2(\mathbf{m}_0, Lebesgue) \le C \|\mathbf{m}_0 - Lebesgue\|_{H^{-1}}$$

(Any dimension!)

Controlling $H^{-1} \implies$ controlling 2-Wasserstein distance. H^{-1} norm of \mathbf{m}_0 – Lebesgue is related to *Coulomb energy*.

$$\iint g(x-y)d\left(\mathbf{m}_{0}-\mathsf{Lebesgue}\right)(x)d\left(\mathbf{m}_{0}-\mathsf{Lebesgue}\right)(y),$$

where g is the Coulomb kernel.

Theorem (HL)

- 1. In any dimension, finite Coulomb energy of a point process implies finite 2-Wasserstein distance to the Lebesgue measure.
- 2. The converse is (barely false) but becomes true under uniform density condition.
- 3. In dimension 2, *-HU is equivalent (!) to finite Coulomb.

The last step relies on a recent result of Sodin-Yakir-Wenmann.

Counter-example: hyperuniform but not finite distance

Take $\Lambda_N := [-\sqrt{N}, \sqrt{N}]^2$. Throw $|\Lambda_N|$ i.i.d. points in Λ_N .

- Average Wasserstein distance between the points and Lebesgue (or a portion of lattice...) is CN²log N Ajtai, Komlos, Tusnady 1984.
- ▶ Within Λ_N , the rescaled number variance is of order 1...

Counter-example: hyperuniform but not finite distance

Take $\Lambda_N := [-\sqrt{N}, \sqrt{N}]^2$. Throw $|\Lambda_N|$ i.i.d. points in Λ_N .

- Average Wasserstein distance between the points and Lebesgue (or a portion of lattice...) is CN²log N Ajtai, Komlos, Tusnady 1984.
- ▶ Within Λ_N , the rescaled number variance is of order 1...

Tile \mathbb{R}^2 with copies of Λ_N , throw $|\Lambda_N|$ i.i.d. points in each copy.

- ► The transportation cost per unit volume grows like log N
- ► The rescaled number variance becomes small at large scales.

Choose N randomly in such a way that:

$$\sum_{n>1} \mathbb{P}(N=n) \log n = +\infty.$$

Thank you for your attention!